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Trustworthy AI and Automated Driving 

Artificial Intelligence in Automated Driving: an 
analysis of safety and cybersecurity challenges 

INTRODUCTION 
 

Modern vehicles are increasingly equipped with automation 

mechanisms that are designed to assist or replace human 

drivers and enhance the safety of road users. This trend leads 

to the development of a new generation of automated 

vehicles, such as cars, trucks, or buses, that are capable of 

circulating in the public with limited or no human intervention. 

 

While such capabilities were out of reach only a decade ago, 

recent advances in AI have triggered a positive outlook for 

this technology. Level 4 and 5 automated vehicles (see Figure 

1) are being actively developed by technological companies 

and car manufacturers, despite uncertainty about future 

commercialisation.

→ Artificial Intelligence (AI) is a powerful technology 

that will play a central role in mobility of the 

future. 

→ The breakthroughs achieved by AI systems in 

automated driving are contrasted by their higher 

complexity and opacity, potentially leading to 

safety and cybersecurity risks. 

→ The growing digitalisation of vehicle systems 

increases the potential cybersecurity attack 

surface and can lead to stronger impacts if 

automation mechanisms are compromised. 

→ Biases in and lack of generalisation of AI systems 

and data may cause vehicles to malfunction in 

natural conditions or as a result of a cyber-attack, 

putting the lives of passengers and road users at risk. 

→ Vehicle testing procedures need to take into account 

the specificities of AI to ensure that safety and 

cybersecurity risks are properly addressed. 

→ Addressing by design the AI safety and cybersecurity 

challenges is key to securing the many benefits that 

automated driving can bring to society. 

 

HIGHLIGHTS 

  



 

 

Vehicles of lower levels are already available on the market, 

providing Advanced Driver-Assistance Systems (ADAS), some 

of them based on Artificial Intelligence (AI). Even if these 

assistance functions are expected to be operated under 

human supervision, they should still provide sufficient 

guarantees in terms of safety and cybersecurity.  

This brief  

→ reflects on the evolution of safety and security 

testing of automated vehicles, taking into account 

the limitations of AI technology, in particular machine 

learning based systems, 

→ provides an outlook of the challenges for road safety 

and security introduced by the adoption of 

automated features powered by AI in vehicles, 

→ explains the novel threats introduced by AI 

technology, based on recent scientific developments, 

→ justifies the need for an evolution of testing 

methodologies to properly assess such threats.  

To assess the threat landscape, the discussion is divided 

according to the nature of the risks, making a distinction 

between situations where malfunctions appear in natural 

driving conditions, and situations where they are deliberately 

caused by an adversary. 

By its nature, automated driving constitutes a high-risk 

application: malfunctions and cyberattacks can cause safety 

problems and harm in the physical world, potentially at large 

                                                           
1 https://ec.europa.eu/digital-single-market/en/cyber-physical-systems  
2 Bishop, ‘Pattern Recognition and Machine Learning’, 2006, Springer. 
3 Goodfellow et al., ‘Deep Learning’, MIT Press, 2016. 

scale. Automated vehicles are cyber-physical systems1 

operating in particularly challenging environments, designed 

by and for humans. They are equipped with advanced 

perception and planning systems capable of recognising road 

markings (lane, signs, etc.), users (vehicles, cyclists, 

pedestrians, etc.) and objects, and of taking actions 

(accelerating, braking, turning, etc.,) in order to achieve the 

desired trajectory. These capabilities largely rely on complex 

digital systems and software powered by AI technologies, 

where machine learning2, and in particular deep learning3, 

plays a core role.  

These techniques, combining mathematical modelling, 

advanced algorithms, large volumes of data, and tremendous 

computational power, are steadily closing the gap between 

automated systems and human reasoning capabilities in the 

narrow context of automated driving. Machine learning 

techniques are becoming a key enabler in perception and 

planning tasks, sensing and making sense of the environment, 

and determining the trajectory of the vehicle and the actions 

(e.g. accelerating, turning, etc.) to achieve this trajectory, while 

ensuring safe and secure driving aligned with human values.  

Even though machine learning has reached unprecedented 

levels of performance in recent years, it has limitations in 

terms of understandability and robustness that can make 

systems subject to various vulnerabilities and issues4. It is 

important to understand the threats introduced by AI 

technologies, and to integrate their specificities in testing 

procedures in order to ensure the compliance of AI systems in 

4 Rudner and Toner, ‘Key Concepts in AI Safety: Robustness and Adversarial 
Examples’, 2021. 

Figure 1 – The SAE J3016 standard defines six levels of driving automation for on-road vehicles. Regarding automated vehicles, Level 4 

describes vehicles able to autonomously (i.e. without any human driver intervention) perform all driving functions under certain conditions 
(e.g. on a given type of roads), whereas Level 5 describes vehicles able to autonomously perform all driving functions under all conditions. 
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automated vehicles with current safety and security 

requirements5.  

Addressing these issues will be crucial for the adoption of 

automated vehicles by consumers, in order to create trust in 

such novel, highly technological products. 

Policy context 
The challenges raised by automated driving led to the 

development of several regulations and initiatives aiming to 

ensure safe and secure vehicles. The European Commission 

launched several initiatives, such as the Cooperative 

Intelligent Transport Systems (C-ITS) deployment platform6, 

with the objective to identify and agree on how to ensure 

interoperability of intelligent transport across borders and 

along the whole value chain, and the C-Roads platform7 to 

develop and share technical specifications to verify 

interoperability through cross-site testing.  

The Commission also published a Strategy on Cooperative 

Intelligent Transport Systems to facilitate the convergence of 

investments and regulatory frameworks across the EU, and a 

Strategy for mobility of the future setting out specific actions 

to implement a pilot on common EU-wide cybersecurity 

infrastructures and processes, needed for secure and trustful 

communication between vehicles and infrastructure. In 2019, 

the European Commission set up a Commission Expert group 

on cooperative, connected, automated mobility (CCAM) to 

provide advice and support to the Commission in the field of 

testing and pre-deployment activities. 

In parallel, specific actions regarding the uptake of AI in 

automated driving have been taken, such as the publication in 

2020 of a report on the Ethics of Connected and Automated 

Vehicles8 by an independent group of experts that includes 20 

recommendations covering dilemma situations, the creation 

of a culture of responsibility, and the promotion of data, 

algorithm and AI literacy through public participation. In 

February 2021, a joint ENISA-JRC report9 on the cybersecurity 

risks of AI in automated driving was published, describing the 

potential vulnerabilities of AI components embedded in 

vehicles, and providing recommendations to mitigate them. 

From a general standpoint, ensuring safety and security of AI 

systems is a cornerstone of recent policy initiatives of the 

European Commission, as part of a commitment to 

establishing a set of principles for trustworthy AI. This led to 

the publication of a proposal for a regulation of AI in April 

202110, putting forward legislation addressing the human and 

ethical implications related to the uptake of the technology in 

end-user products and services. In particular, it details specific 

                                                           
5 Berghoff et al., ‘Towards Auditable AI Systems’, 2021. 
6 https://ec.europa.eu/transport/themes/its/c-its_en  
7 https://www.c-roads.eu/platform.html  
8 Horizon 2020 Commission Expert Group to advise on specific ethical issues 
raised by driverless mobility (E03659), ‘Ethics of Connected and Automated 
Vehicles: Recommendations on Road Safety, Privacy, Fairness, Explainability and 
Responsibility’, 2020. 

high risk cases, defined by sectors (transport, healthcare, etc.) 

and the impact (e.g. physical harm, damage, etc.), for which a 

set of requirements, including robustness and cybersecurity, 

has to be met by the system providers. 

Automated vehicle functions are regulated by the United 

Nations Economic Commission for Europe (UNECE) as specific 

scenarios such as advanced emergency braking (AEB)11, lane 

keeping assist (ALKS)12, and lane departure warning (LDW)13. 

Cybersecurity of vehicles in general has also been regulated 

under UNECE14, with various measures to minimise risks 

throughout the entire life cycle of a vehicle. Current testing is 

based on black-box approaches to ensure minimum levels of 

safety, but does not cover all principles for trustworthy AI, 

which may lead to unexpected accidents (see Box 1). In this 

9 ENISA-JRC, ‘Cybersecurity Challenges in the Uptake of Artificial Intelligence in 
Autonomous Driving.’, 2021. 
10 European Commission, ‘Proposal for a Regulation Laying down Harmonised Rules 
on Artificial Intelligence’, 2021. 
11 UN ECE R131, EUR-LEX 2014 L 214/47 
12 UN ECE R 157 EUR LEX 2021/389 
13 UN ECE R130 EUR LEX 2013 L 178/29 
14 UN ECE R155 EUR LEX 2021/387 

Box 1: Malfunction of automated vehicles 
Accidents involving AI features of level-2 automated 

vehicles have occurred multiple times all over the world. 

In 2018 in the United States, the autopilot feature of a 

vehicle was not able to detect a white truck crossing the 

road in twilight conditions, leading to a crash. In 2020 in 

Taiwan, an automated vehicle crashed into an 

overturned truck on the highway. Preliminary studies 

suggest that the cameras may have mistaken the white 

roof of the truck without wheels for an overexposed 

portion of the scene, while the low resolution of radar 

may not have been able to locate the object on the 

same lane as the vehicle. It has been noted that the 

drivers may have relied excessively on automated 

features, and were not in a position to recover manual 

control of the vehicle in time. 

Fully-automated test vehicles have also been subject to 

accidents. In 2018, a vehicle struck a pedestrian while 

driving autonomously. The investigation concluded that 

the system only succeeded in detecting the pedestrian 

and predict her path a few seconds before impact, 

therefore preventing the operator from using the 

emergency brake. 

Sources 
 Collision Between Car Operating with Partial Driving Automation 

and Truck-Tractor Semitrailer, Delray Beach, Florida, 2019’, 
National Transportation Safety Board,  

 Accident report NTSB/HAB-20/01, 2019. 

 https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-
in-taiwan-crashes-directly-into-overturned-truck-ignores-
pedestrian-with-autopilot-on/ 

 Collision Between Vehicle Controlled by Developmental 
Automated Driving System and Pedestrian, Tempe, Arizona, 
March 18, 2018’, National Transportation Safety Board, Accident 

report NTSB/HAR-19/03, 2019. 

https://ec.europa.eu/transport/themes/its/c-its_en
https://www.c-roads.eu/platform.html
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on/


 

 

respect, AI-based functions involved in automated driving will 

likely require an adaptation of current regulations in line with 

a future regulation on AI at the European level, to ensure 

proper assessment before deployment, in particular regarding 

their accuracy, robustness, and cybersecurity. 

AI SAFETY FOR AUTOMATED DRIVING  
 

AI safety in automated vehicles aims to identify potential 

causes of failures of AI systems, and reduce the likelihood of 

the occurrence of unintended behaviours15. To ensure the 

protection of human life and the security of public spaces, AI 

safety considerations should be properly addressed in the 

development and deployment of automated capabilities in 

vehicles and, more broadly, in software used in vehicles for 

automated driving. This requires taking into account the 

reliability of each individual subcomponent focused on a 

dedicated task (e.g. traffic sign detection, trajectory prediction 

and planning, etc.), as well as of the system as a whole.  

Three key areas of AI safety are:  

specification - ensuring that the behaviour of systems is 

fully aligned with the intentions of the designers, 

robustness - providing guarantees that systems do not 

display unexpected behaviour in the wide range of 

conditions they may encounter, 

assurance - ensuring that systems are auditable and 

understandable by human supervisors. 

Safety considerations vary according to the nature of the task 

the AI system aims to solve, and the techniques that are 

employed. The robustness aspect is particularly crucial in the 

context of automated driving. The outer environment in which 

automated vehicles evolve is made of an uncountable number 

of situations that are only partially captured by the data sets 

on which systems are developed. Variability factors include, 

amongst others, weather, lighting, road infrastructures, types 

of vehicles, vegetation, buildings, road behaviours, roadway 

conditions, etc. The impact of failures in driving may be very 

serious (e.g. life loss, injuries, damages, etc.) considering the 

driving settings. In particular, a vehicle‘s high speed may not 

allow for a human driver to intervene and take back control in 

time when the AI based decision-making systems cannot 

reliably perform a task (see Box 1). 

The evaluation of the robustness of AI systems should also 

take the geographical context into account in which the 

development of automated vehicles takes place: a significant 

share of the research and innovation activities on AI in 

automated driving takes place in the US and in China, raising 

                                                           
15 Arnold and Toner, ‘AI Accidents: An Emerging Threat’, 2021. 
16 The term “attack surface” is used to describe the sum of all potential entry points 
that can be used by an adversary to compromise the security of a system. 
17 Musser and Garriott, ‘Machine Learning and Cybersecurity: Hype and Reality’, 
2021. 
18 Miller and Valasek, ‘Remote exploitation of an unaltered passenger vehicle’. Black 
Hat USA 2015. 

concerns about the reliability of systems trained on datasets 

that may not reflect the specificities of EU roads (e.g. 

multilingual signs, narrow roads, specific driving rules and 

behaviours, etc.). 

Finally, inspecting the inner mechanisms at play in AI-based 

decision-making processes is crucial for safety considerations. 

It is important to ensure, before deployment, that AI systems 

display a sufficient level of safety to drive on open roads, that 

systems are properly audited, and that liability can be 

determined in case of an accident. However, the opaqueness 

of AI systems, even for experts, is a major hindrance to the 

understanding of the logics involved in the decision taken by 

automated systems, limiting the capacity to understand the 

decisions taken by vehicles. 

AI CYBERSECURITY FOR AUTOMATED 
DRIVING  

 
Modern vehicles come equipped with an increasing number of 

digital systems and online connectivity to offer smart 

functionalities and seamless integration within the wide array 

of digital services used by citizens. This growing digitalisation 

of vehicles results in a larger attack surface16 that can be 

exploited by malicious actors driven by profit (e.g. using 

ransomware) or by intent to cause physical harm. Automated 

vehicles need therefore to be properly secured to mitigate the 

safety risks caused by malicious actions, due to their 

integration in a high-risk environment. 

The increasing uptake of AI technologies in vehicles amplifies 

this trend, bringing an additional layer of complexity on top of 

classical software components17. This more complex and 

larger digital ecosystem in vehicles raises significant 

cybersecurity challenges, particularly considering the potential 

impact a cyberattack could have if the core functionalities of 

the vehicle are compromised. In 2014, security researchers 

demonstrated for the first time how the digital systems of a 

well-known vehicle model sold worldwide could be attacked 

over the Internet to take remote control over the vehicle to 

cause crashes18. 

The inclusion of more advanced AI components in higher 

levels of automation further complicates this picture by 

introducing a whole new range of potential vulnerabilities, the 

malevolent exploitation of which could cause intended 

offence and harm. Recent years have seen an increasing 

amount of research and practical examples highlighting new 

attacks against machine learning  

systems19 20 21.  

 

19 Huang et al, ‘Adversarial Machine Learning’, ACM workshop on Security and 
artificial intelligence, 2011. 
20 Szegedy et al., ‘Intriguing properties of neural networks’ International Conference 
on Learning Representations, 2014. 
21 Carlini and Wagner, ‘Towards evaluating the robustness of neural networks’, IEEE 
Symposium on Security and Privacy, 2017. 



 

 

 

The main types of attacks include: 

evasion attacks and adversarial examples that consist of 

supplying specifically crafted inputs – adversarial 

examples - leading to misclassifications or other faulty 

behaviours,  

data poisoning that consists of tampering with the training 

data of machine learning systems to add vulnerabilities in 

the fitted AI model (e.g. adding backdoors or inducing a 

specific malfunction).  

Other attacks against the AI model or training data have been 

designed to extract model parameters or data used in the 

development phase of models, with potential risks for privacy, 

trade secrets, and system integrity.  

                                                           
22 UN ECE R156 EUR LEX l 82/60 

Figure 2 – Adversarial attack against a traffic sign carried out in JRC: 

a sticker (right) is placed onto a ‘Stop’ sign (left) causing a traffic sign 
recognition system to incorrectly classify it as an ‘End-of-speed-limit’ 
sign. 

Source: JRC 

So far, adversarial examples are considered as the main 

threat for automated vehicles, as most subsystems for 

perception rely on deep learning based models known to be 

highly susceptible to this kind of attack. Instances of these 

attacks may happen in physical context, by altering the 

environment perceived by sensors. Although such 

cyberattacks may be hard to implement, examples of 

successful attempts on commercial vehicles in real world 

settings have already been demonstrated in controlled 

environments. This includes for instance deceiving traffic sign 

recognition systems by placing stickers on signs, leading 

automated vehicles to accelerate past the speed limit (see 

Box 2). These kinds of attack can be set up without knowledge 

of the inner design of AI systems, simply by gaining access to 

the ICT system and monitoring the outputs of the AI 

components. 

Another prominent threat for automated vehicles comes from 

data poisoning, as it is very common for AI systems to be 

updated with new data to make them more accurate over 

time. Attacking the communication channels between vehicles 

and manufacturers could allow an adversary to inject 

corrupted data in the training stage of vehicles, leading to an 

alteration of the AI components that could be deployed on a 

large scale through Over-the-Air updates. 

Both attacks exemplify the need to consider the full supply 

chain around AI components when considering the 

cybersecurity of automated vehicles, and not just AI-specific 

vulnerabilities (e.g. by securing the way automated vehicles 

update AI and non-AI software22).

Box 2: Cybersecurity attacks against 
automated vehicles 

Adversarial attacks happen when an adversary alters 

the inputs of the AI system to deceive its decision-

making process. This can be done digitally, e.g. by 

adding a perturbation on the data stored in memory, or 

by altering the environment captured by the sensors of 

the vehicle (see Figure 2). 

In 2019, the Chinese cybersecurity expert group Keen 

Security Lab of Tencent published a widely recognised 

experimental security research of a commercial driving 

assistance system present in vehicles with various level-

2 autonomous driving functionalities. This system, based 

on AI technologies, is embedded in the ICT infrastructure 

of the car and directly connected to the engine control, 

while mostly relying on camera sensors.  

First, they demonstrate that a malicious actor can 

remotely enter the ICT system of the car by exploiting 

vulnerabilities in the system software. After that, the 

malicious actor is able to perform a number of actions 

on the classical software, including steering the wheel 

remotely. In a second stage, they show that it is also 

possible to attack the AI-based autopilot system, some 

functions of which being solely based on machine 

learning perception systems, which make them 

vulnerable to adversarial attacks. In a range of 

examples, Keen security researchers produce adversarial 

examples capable of making the lane detection 

assistance system turn the car into the reverse lane, 

only requiring the access to the outputs of deep learning 

models 

Source 
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research

_of_Tesla_Autopilot.pdf 

https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf


 

 

CONCLUDING REMARKS 
 

Replicating the complex and multifaceted skills of human 

drivers in automated vehicles is a huge technical challenge, 

which is progressively being solved by the tremendous 

advances of AI technologies. Machines rely on statistical 

patterns in data to understand their environment and infer a 

decision. As the logical mechanisms are not explicitly defined, 

a higher degree of complexity and opacity is introduced that 

can lead to unexpected behaviour. AI systems in vehicles may 

be susceptible to malfunctions or cyber-attacks that could 

endanger the life of passengers and other road users. 

This brief provides a qualitative analysis of the challenges 

that follow the uptake of AI components in vehicles in terms 

of safety and security. It is important to ensure that safety 

measures, security testing and auditing of software used in 

automated vehicles account for AI-specific potential 

vulnerabilities. This will only be possible with the adoption of 

practices that take into account the nature of AI systems and 

their supply chain. While AI systems will likely not achieve a 

perfect correctness, the understanding and control of the 

uncertainty of AI systems will be crucial to understand how to 

define sound regulations. 

The development of AI systems takes place in a complex 

supply chain, involving many stakeholders, assets, and 

complex processes, including data management and feedback 

loops, that need to be properly tested, secured and integrated 

in traditional ICT development lifecycles. The establishment of 

testing strategies accounting for the inherent flaws of AI 

systems will need to be pursued, in line with the current 

principles set out in the European Commission proposal for a 

regulation of AI. The concrete implementation of these 

principles will require a joint research and development effort 

in transport, AI, and cybersecurity. 

Beyond compliance with safety and security requirements, 

these efforts are also necessary to ensure the consistency of 

liability regimes with the emergence of new digital 

technologies such as AI. Testing will never completely exclude 

the possibility of accidents or malfunctions involving 

automated vehicles. The understanding of the sequence of 

events that led to an accident may require in-depth analysis 

of the inner mechanisms of the AI components of the vehicle 

as part of the investigation to determine liabilities. In this 

context, current liability regimes may need to be revisited23. 

In addition to testing, limitations of AI systems in comparison 

to human abilities can be addressed by shifting the design of 

road infrastructures, from an approach exclusively thought 

out for human drivers to a new generation of infrastructure 

                                                           
23 Twigg-Flesner, ‘Guiding Principles for Updating the Product Liability Directive for 
the Digital Age’, 2021, https://papers.ssrn.com/abstract=3770796. 

including signals that can be processed efficiently and reliably 

by machines. This approach is in line with the C-ITS strategy 

currently under deployment at European level, which aims to 

facilitate the convergence of investments and regulatory 

frameworks across the European Union to connect vehicles 

and infrastructures. Getting information from the 

infrastructure in a reliable and secure way may provide 

redundancy channels that could complement AI based 

perception and planning systems of the vehicle in particularly 

challenging environment such as dense urban areas.  

AI technologies are key for the development of a new 

generation of vehicle safety systems that can better protect 

drivers and pedestrians handling situations where human 

driver capabilities fail (e.g. for lack of concentration, or during 

fast-paced events). Vehicles with high levels of automation 

have also shown their potential to avoid accidents in complex 

situations that might be challenging for human drivers. 

However, AI failures, both accidental or as a result of a 

cyberattack, have also occurred in situations where human 

drivers would not have been confused. 

AI is a powerful technology that will play a central role in 

mobility of the future. Fully addressing the specific safety and 

cybersecurity challenges linked to the integration of AI 

technologies in vehicles is key to securing the many benefits 

that automated driving can bring to society, ensuring that its 

uptake results in higher safety levels on European roads. 
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