INSTITUT DE RECHERCHE
TECHNOLOGIQUE

PKI architecture and technical
specifications (v2)

Activity 2.4.4
Livrable 2.4.4-6-v2

Version : 2.0

Date : 6" November 2015

Revision History

Nous avons modifié le document envoyé par le projet ISE (ISX-TEO-SE-ISE-LIV-0061_0.10) afin de remettre
I'architecture globale de la PKI qui a été adoptée dans le projet SCOOP@F suite a la demande du Copil Etudes
qui a eu lieu le 08 Avril 2015. Ensuite, nous avons intégré les modifications effectuées dans une nouvelle
version (ISX-TEO-SE-ISE-LIV-0061_1.1, date : 15/07/15) qui est publique.

Date Version Redactors Principal modifications Dissemination
uctu
16/04/2015 1.0 H. Labiod SCOOP@F /ANSSI

) Numérotation de figures
JP. Monteuuis i 8
Corrections

Prise en compte des
modifications dans le livrable
ISE (ISX-TEO-SE-ISE-LIV-

TPT
06/11/2015 2.0 H. Labiod 0961T1_'1) , SCOOP@F
P Monteuuis Mise a jour de I'annexe C
Module ASN.1
Effacement de la mention
‘Confidentiel’

Table of contents

L=AVTEY Lo o Y0 o T o1 Y |

I [} (0 o [V 1ot o [o] o TP Y- |

3 I R ©] « =T o1 4 ROt 4
1.2 TypographiC CONVENLIONSc.cieeeiieeiieniiieniitnniitenetennerenserensersseressesnssssnsessnsens 4
1.3 Definitions and abbreviationscccuiveuiiiiiiiieiiiiiiinnni, 4
O 10 =Y =T 4 Vol N 5
1.4.1 NOrMaAtiVe rEfEIrENCES..c..eiiiieieetee et sttt st e s b e e s e e 5
1.4.2 INfOrmMative refErENCEScoviiiieieee e e s 6

2.SYStEIM OVEIVIEWceuienieieieiieieitetetententescescascescsscssssssssssossassassassassansans 7

2.1 High level architecturecccccveiieiieeiieeiereniiieniireecireertnsersnserensesssseressesasseses 7
2.2 DesScription Of r0les....cc.iiieeiiiiiiiiiieccire e rrees e reneesrenseessnnssssenssessens 7
0 R © T o Y=Y -1 o U 7
P A \V 1 101 - ot (U] S OO UPTRPPPRPPROTRO 7
P T BT - 4 o] o PSPPI PPPPPPPPTRN 8
2.3 Higher-layer supported protocols........cccccereeiireniiieiiieiiieiiieeniieeieneeneneecereenes 8

T80 24 L IRV =] ¢ o 1.

S 00 Y VT o o o N 9
3.1.1 Root Certificate Authority (RCA) component functions........cccececevvveeieeieiicciinreeeee e, 9
3.1.2 Long Term Certificate Authority (LTCA) component functions.........ccccceeeveecnveeeeeeeennennns 12
3.1.3 Pseudonym Certificate Authority (PCA) component functionscccccceveecrvveeeeeeenncnnns 14
3.1.4 Distribution Center (DC) component fUNCLIONScccvveeeeiieiiiiiireeeeec e 15

20 A 0 - | = 1R 1 ¥ o U =N 16
3.2.1 GENEral dESIGN FUIES ..ceeee et e e e e e e e e e e e e e s eaatt e e e e e e e e eennnntanneeeens 16
B A D F- | - I V] o1 O OO PP PP PPPORRRPPPN 16
3.2.3 Algorithm identifier TYPESuvveeeeeeee e e 17
I Y T { o [=To | D | = T Y/ o =TSR 17
3.2.5 ENCIYPtedData tYPe e et e e e a e e e e e nararaaaaaas 19
3.2.6 Certificate REVOCATION LiSt.....c.ciiiiiiiiiiiiiiiiiiieeecee e s 20
3.2.7 Trust-service Status LiSt.......ccooiiiiiiiiiiiiiiii e 20

3.2.8 Mapping With ETSI Standards..........oocuieiiiiiiieiiiiieee ittt e e s e s s sireeeseane 21

00 T o | I 2 (=T [U= 3 22
3.3.1 Create RCA CertifiCate......cccoviiriieiieciececee e e 22

3.3.2 Create Authority (LTCA/PCA) CertifiCateccoveerueieireeecireeeeree ettt e 22

3.3.3 Request of a Long Term Certificate (LTC) ...uueeeeeieciiieeeiee et nrneeeee e 23

3.3.4 Request of a Pseudonym Certificate (PC)u.....ccouiveiireeiieiiiiiiieeeee et 25

3.3.5 Validate Pseudonym Certificate (PC) reqQUESTuvveveeiiiiiiiirieeee et 29

K TN S C 1= A O { KOOSO P OO PUPU P PPRPROP 33

K T A C 1= i 1] E SO OOP RO PPV R PUPRPROP 33
Appendix A: Examples of request.......ccceeeeeeiieireiieeiieicriieecrenerecrencrncennens 33
Appendix B: Encryption of @ message.....cccccieuiiiieeiiieeiiieeiiineinieninneeenennes 40
Appendix C: ASN.1 Moduleccciieeiiieiiieiiiiiiiiieiiiciieresneeerssnenns 41

1. Introduction

1.1 Objective

This document is primarily written for the implementers. The document provides references to the high level
PKI architecture and directs the reader to the detailed information cited in the document [i.1].

1.2 Typographic conventions

The following typographic conventions are used in this document:

EX ::= SEQUENCE {} Code example

[1] Numbers in-between square brackets are references to publications
mentioned in the appendix References.

1.3 Definitions and abbreviations

For the purposes of the present document, the following definitions and abbreviations apply:

Abbreviations Definitions

Access Point Access point is a HTTP URL used to access web services of
the PKI.

Anonymity Anonymity is the ability of a user to use a resource or

service without disclosing its identity.

Pseudonym Certificate Authority (PCA) Security management entity responsible for issuing,
monitoring the use of authorization tickets.

Pseudonym Certificate (PC) Data object that demonstrates that the holder has
permissions which entitle him to take specific actions.

Confidentiality Confidentiality is a set of rules or a promise that limits
access or places restrictions on certain types of
information.

Certificate Revocation List (CRL) Certificate Revocation List is a list digitally signed by a CA

that contains certificates identities that are no longer valid.

Distribution Center (DC) Distribution Center provides ITS-S the updated trust
information necessary for performing the validation
process to control that received information is coming
from a legitimate and authorized ITS-S or PKI certification

authority.

Integrity Integrity means maintaining and assuring the accuracy and
consistency of data over its entire life-cycle.

ITS Station (ITS-S): ITSS-V or ITSS-R ITS Station is end-user of the PKI system. The PKI system
provides it different certificates (LTC or PC) to allow secure
communications. ITS-S can be normal vehicles, public
safety vehicles, roadside stations, nomadic devices and
traffic management centers...

Manufacturer Manufacturer installs necessary information for security
management in ITS-S at production.

Security management entity responsible for the life cycle

Long Term Certificate Authority (LTCA) management of long term certificate (LTC).

Long Term Certificate (LTC) Data object that is used in message exchanges between an
ITS Station and a security management entity and
demonstrates that the valid holder is entitled to apply for
pseudonym certificate.

Root CA (RCA) Root Certificate Authority is the root of trust for all
certificates within the PKI hierarchy. Root CA issues
certificates for EAs and PCAs to authorize them to issue
certificates to end-entities. It also defines and controls
policies among all certificate issuers. The Root CA is
required when a new LTCA or PCA shall be created, or
when the lifetime of LTCA or PCA certificate expires.

Trust-service Status List (TSL) The Trust-service Status List is a signed list which contains
new RCA certificates, LTCA and PCA certificates and PKI
service addresses (PCA and DC). This list is signed by the
RCA and can be transmitted over the air.

1.4 References

1.4.1 Normative references

The following references documents are not essential to the use of the present document but they assist the
user with regard to a particular subject area.

[1] ETSI TS 103 097 (v1.2.1): ITS; Security; Security header and certificate formats
[2] ETSI TS 102 941 (v1.1.1): ITS; Security; Trust and Privacy Management

[3] X.680: Information Technology - Abstract Syntax Notation One (ASN.1): Specification of basic
notation

[4] X.690: Information Technology - ASN.1 encoding rules: Specifications of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER)

[5] X.691: Information Technology - ASN.1 encoding rules: Specification of Packed Encoding Rules (PER)
[6] RFC2616: HTTP/1.1

[7] NIST SP 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality

[8] ETSI EN 302637-2: ITS; Vehicular Communications; Basic Set of Applications; Part 2: Specification of
Cooperative Awareness Basic Service

[9] ETSI EN 302637-3: ITS; Vehicular Communications; Basic Set of Applications; Part 2: Specifications of
Decentralized Environmental Notification Basic Service

[10] ETSI TR 102 965: ITS; Application Object Identifier (ITS-AID); Registration list
[11] FIPS 198-1: The Keyed-Hash Message Authentication Code (HMAC)

1.4.2 Informative references

The following references documents are not essential to the use of the present document but they
assist the user with regard to a particular subject area.

[i.1] PKI System Requirements Specifications (ISX-TEO-SE-ISE)- Livrable 2.4.4-5
[i.2] RFC5246: The TLS Protocol version 1.2

[i.3] RFC5084: Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic Message
Syntax (CMS)

[i.4] SEC 1: Elliptic Curve Cryptography version 2.0

[i.5] ETSI TS 102 860: Intelligent Transport Systems (ITS); Classification and management of ITS
application objects

[i.6] PKI architecture and technical specifications (v0.10) (ISX-TEO-SE-ISE)

2. System overview

2.1 High level architecture
This document describes the functionalities of the PKI system for ISE project.
The PKI system is divided into four entities:

e The Root Certificate Authority for the generation of CA private keys, a key step in the initiation
of a trust chain.

e Long Term Certificate Authority (LTCA), used by Manufacturer and ITS-S, respectively for the
ITS-S lifecycle management and for the provisioning of LTCAs.

e The Pseudonym Certificate Authority (PCA) used by ITS-S, for requesting PCs.

e The Distribution Center, used by ITS-S to retrieve CRL and TSL.

The PKI for ITS-S is a set of software modules enabling distribution of certificates for secured communication
between ITS-S.

Figure 1 shows the SCOOP-ISE PKI high level architecture.

Manufacturer
LTCA n

ITS-Station

OFFLINE

ONLINE

Figure 1: PKI high level architecture

2.2 Description of roles

2.2.1 Operator

The “operator” role is to install and update necessary information for security management in ITS-S during
operation.

2.2.2 Manufacturer

The “manufacturer” role is to install necessary information for security management in ITS-S at production.
More precisely, the manufacturer bootstraps the process for manufacturing a trusted ITS-S in production site,

i.e. generates and stores securely required crypto-material in its security module, initializes RCA and LTCA
certificates and their associated network addresses.

2.2.3 ITS-Station

The “ITS-Station” role is to request certificates (LTCs and PCs) from the LTCA and PCA. ITS Station only has
access to the web service interface.

2.3 Higher-layer supported protocols

The hereafter described protocol tries to reach the following security objectives:

- Authentication/authorization control: authentication consists to be sure of the identity which sends data.
Authorization control is the verification of an access policy, based on a trusted authentication. Authenticate all
entities participating in the protocol is required to prevent illegitimate persons to enter in the system, or to
access some unauthorized resources or services.

- Integrity: the integrity of all transmitted data is important to ensure that the contents of the received data
are not altered.

- Confidentiality/Privacy: data should only be accessed by authorized entities. The real identity of ITS Station
has to be protected, by cryptographic mechanisms and depending on the type of data sent.

- Non-repudiation/Traceability: Non-repudiation is necessary to prevent ITS Station or others entities from
denying the transmission or the content of their messages. Traceability, which is the warranty that an entity
can’t refute the emission or reception of information, is also extremely important.

- Unlinkability: ability of a user to make multiple uses of resources or services without others being able to link
these uses together.

- Anonymity: ability of a user to use a resource or service without disclosing the user's identity.

To support security management of trusted ITS-S (vehicles, road-side or center stations), an automatic
communication means with the different PKI modules shall be provided by the ITS-S embedded system. This
section specifies the higher layers of the protocol stack (see figure 2) and assumes either a fixed or cellular
network with the ITS-S or an ITS G5 communication profile supporting IP connectivity.

Machine-to-machine communications with the LTCA, PCA, and DC components use HTTP/1.1 as a transport
mechanism, over TCP, over IP. No supplementary cryptographic layer such as TLS is required.

Messages are sent as HTTP GET or POST requests. Parameters for the POST requests and responses, and
complete path for GET requests are described in the corresponding messages descriptions.

The chosen encoding rules are ASN.1 DER (Distinguished Encoding Rules), defined in [4].

Human-to-machine communications with the LTCA and PCA use HTTP/1.1 as a transport mechanism, over TCP,
over IP, with TLS. A web interface (used by operators and manufacturers) is intended: this is out of scope of this
document.

@ o
F Operator F Operator
TTPS TTPS

H H
Web Service
w ¢ HTTFS HTTP (POST/GET) b
Manufacturer A

Web Service Web Service
HTTP (POST/GET) HTTP (POST/GET)

HTTP -

Figure 2: Higher-layer supported PKI protocols

3. PKI System

3.1 Functions

3.1.1 Root Certificate Authority (RCA) component functions

The features of RCA component (see livrable 2.4.4-5) are:

= Creation of RCA key pair and self-signed certificate;
= [ssuance of CA (LTCA or PCA) certificates;

= Revocation of CA (LTCA or PCA) certificates;

= Generation of CA CRLs;

= Generation of a TSL.

3.1.1.1 Create a RCA certificate
Objective

Create a RCA certificate.

Input Data

The following information is provided:
= The assurance level

= The ITS AID list

= The validity restrictions
0 The dates (time_start_and_end)
0 The region (optional)
= The name of the Certificate Authority (optional)
Output Data
A RCA certificate is created. The format of this certificate is described in ETSI Standard, see [1].
Traceability
The action is entered in the audit log.

The action is viewable in the log from the operator interface.

3.1.1.2 Create a LTCA certificate

Objective

Create a LTCA certificate.

Input Data

The following information is provided:
= The public keys (verification and encryption) to be signed.
= The ITS AID list in accordance with the ITS AID list of RCA.
» The assurance level.
= The validity restrictions
O The dates (time_start_and_end)

0 The region in accordance with RCA’s region (if applicable)

The name of the Certificate Authority (optional).

Output Data

An LTCA certificate is created. The format of this certificate is described in ETSI Standard, see [1].
Traceability

The action is entered in the audit log.

The action is viewable in the log from the operator interface.
3.1.1.3 Create a PCA certificate

Objective

Create a PCA certificate.

Input Data

The following information is provided:
= The public key (verification key and encryption key) to signed
= The assurance level

= The ITS AID list in accordance with ITS AID list of the RCA

10

= The validity restrictions
0 The dates (time_start_and_end)
0 The region in accordance with RCA’s region (if applicable)

= The name of the Certificate Authority (optional)

Output Data

A PCA certificate is created. The format of this certificate is described in ETSI Standard, see [1].

Traceability

The action is entered in the audit log.

The action is viewable in the log from the operator interface.

3.1.1.4 Revoke a CA certificate

Objective
Revoke a CA certificate (LTCA or PCA).

Input Data
The following information is provided:

= ALTCA or PCA certificate to be revoked
Output Data

A successful response is sent.
Traceability
The action is entered in the audit log.

The action is viewable in the log from the operator interface.

3.1.1.5 Generate a CA Certificate Revocation List (CRL)

Objective

Generate a CA Certificate Revocation List.
Input Data
The following information is provided:

= The List of revoked certificates

Output Data
The CA CRL is generated. The format of the CA CRL is described in 3.2.6.

Traceability

The action is entered in the audit log.

The action is viewable in the log from the operator interface.

11

3.1.1.6 Generate Trust-service Status List (TSL)

Objective

Generate the Trust-service Status List.
Input Data

The following information is provided:

= CAs (RCA, LTCA, PCA) certificates
= PKl services addresses (RCA address, LTCA address, PCAs addresses and DC address)

Output Data
The TSL is generated. The format of the TSL is described in 3.2.7.

Traceability
The action is entered in the audit log.

The action is viewable in the log from the operator interface.

3.1.2 Long Term Certificate Authority (LTCA) component functions

The features of LTCA component (described in the first deliverable “PKI System Requirements Specifications”)
are:

= Registration of ITS-S

= Management of ITS-S status

= Management of ITS-S permissions

= [ssuance of Long Term Certificates

= Verification of ITS-S permissions for PC request

3.1.2.1 Register ITS Station

This feature is executed directly by the manufacturer through a graphical user interface (GUI).
3.1.2.2 Change status of ITS Station

This feature is executed directly by the manufacturer or the operator through a graphical user interface.
3.1.2.3 Change permissions of ITS Station

This feature is executed directly by the manufacturer through a graphical user interface.

12

3.1.2.4 Request a long Term Certificate (LTC)
Role(s)

Only the ITS Station possessing the appropriate elements can perform this action.

Objective
An ITS Station requests a long Term Certificate (LTC).
Input Data
ITS Station provides the following information:
= The canonical identifier of ITS Station called unique identifier is livrable 2.4.4-4v2
= The public key (verification key)
= The response decryption public key
= The ITS AID SSP List (see [8] and [9])
= The validity restrictions (optional)
0 The date(s)
0 Theregion
Output Data
LTCA returns a message containing:

e ALTC, the format of this certificate is described in ETSI Standard, see [1].
e Avresponse code (see 3.3.3.2 for more information).

Possible errors
For each of the errors below, an error message is returned to ITS Station responsible for the action.
= |TS Station fails to provide the required values in the request
= |TS Station is unknown (not registered)
= Aninternal error occurs
= Etc.
Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

The traceability of this action is mandatory to lift the anonymity of ITS station.

3.1.2.5 Validate a Pseudonym Certificate (PC) request
Role(s)

Any PCA can perform this operation.

Objective
Validate a PC request before producing a PC to the relevant ITS-S.

Input Data

13

The PCA provides the following information as below to the LTCA for authenticating the requesting ITS-S and
checking its permissions to get requested Pseudonym Certificate:

= LTCA identifier
= Validity restrictions

0 The date(s)

0 The region (optional)
= Subject attributes

= Encrypted structure containing the signature and the LTC identifier

Output Data

LTCA returns a message containing:
e Aresponse code (see 3.3.5.2 for more information).
Possible errors

e The ITS-S is not authorized to get pseudonym certificates
e The ITS-S is not managed by the LTCA
e Etc.

Traceability
The action is entered in the audit log.

The action is viewable in the log from the operator interface.

3.1.3 Pseudonym Certificate Authority (PCA) component functions

The features of PCA component (described in the first deliverable “PKI System Requirements Specifications”)
are:

e The issuance of Pseudonym Certificate.

3.1.3.1 Request pseudonym certificate(s) (PC)
Role(s)
Any ITS possessing an LTC can request a PC.
Objective
ITS station requests PC.
Input Data
ITS Station provides the following information:
= Verification public key(s)
= Encryption public key(s)
= LTCA identifier

= Validity restrictions

14

0 The date(s)
O The region (optional)

= Subject attributes

Output Data

PCA returns a message containing:

e A PC, the format of this certificate is described in ETSI Standard, see [1].
e Aresponse code (see 3.3.4.23.3.5.2 for more information).

Possible errors

For each of the errors below, an error message is returned to the ITS -S responsible for the action, if:
= The ITS-S fails to provide the required values in the request;
= The LTCA cannot be reached;

= The LTCA is unable to verify permissions of relevant ITS Station (see Validate PC request
function);

= Aninternal error occurs;
= Etc.
Traceability
The action is entered in the audit log.
The action is viewable in the log from the operator interface.

The traceability of this action is mandatory to lift the anonymity of ITS station.

3.1.4 Distribution Center (DC) component functions
The features of DC (described in the first deliverable “PKI System Requirements Specifications”) are:

= Publication of a TSL;
= Publication of CA CRLs.

3.1.4.1 Get CA Certificate Revocation List

Role(s)

Everybody can perform this operation.

Objective

Everybody retrieves an updated CRL.

Output Data

The DC provides the CRL. The format of this CRL is described in 3.2.6.

Possible errors

For each of the errors below, an error message is returned to the ITS Station responsible for the action.

e Aninternal error occurs.

15

e Etc.

3.1.4.2 Get Trust-service Status List
Role(s)

Everybody can perform this operation.

Objective

Everybody retrieves an updated Trust-service Status List.

Output Data

The DC provides the TSL. The format of this TSL is described in 3.2.7.

Possible errors

For each of the errors below, an error message is returned to ITS-S responsible for the action.

e Aninternal error occurs
e Etc.

3.2 Data structures

The data structures Data, SignedData, EncryptedData and associated algorithm identifiers types described
below are used to build protocol messages between ITS-S and PKI, and between PKI entities, with clearly
defined security properties.

The CRL structure allows the revocation of long duration certificates (LTCs) used by actors and PKI entities.

3.2.1 General design rules

= version is placed first to allow for the block format to change (should not be used to describe the
version of the inner content)

= contentType describes what is to be found in the associated inner content (and its version)

= cryptographic parameters are before the data to decrypt/verify (hash/signature algorithm, recipients,
encryptionParameters), this allows to stream data

= signature is placed after the data

3.2.2 Data type
-- used as the most external container

The content is optional to allow for external content declaration

Data ::= SEQUENCE {
version Version DEFAULT vi1,
contentType ContentType,
content OCTET STRING OPTIONAL }

ContentType ::= OBJECT IDENTIFIER

16

3.2.3 Algorithm identifier types
This section defines sets of algorithms:

= signature algorithms

= data encryption algorithms
= key encryption algorithms
® hash algorithms

Each defined algorithm is associated to a unique identifier and is accompanied by optional parameters where
applicable. The sets of algorithms are dynamically extensible (at runtime), which allows for crypto agility.

SignatureAlgorithmldentifier ::= SEQUENCE {
algorithm ALGORITHM.&id({SignatureFunctions}),
parameters ALGORITHM.&Type({SignatureFunctions}{@algorithm}) OPTIONAL }

ContentEncryptionAlgorithmldentifier ::= SEQUENCE {
algorithm ALGORITHM.&id({DataEncryptionFunctions}),
parameters ALGORITHM.&Type({DataEncryptionFunctions}{@algorithm}) OPTIONAL }

HashAlgorithmldentifier ::= SEQUENCE {
algorithm ALGORITHM.&id({HashFunctions}),
parameters ALGORITHM.&Type({HashFunctions}{@algorithm}) OPTIONAL }

KeyEncryptionAlgorithmldentifier ::= SEQUENCE {
algorithm ALGORITHM.&id({KeyEncryptionFunctions}),
parameters ALGORITHM.&Type({KeyEncryptionFunctions}{@algorithm}) OPTIONAL }

3.2.4 SignedData type

This data structure is flexible enough to allow for internal or external signed content, multiple signers, multiple
signatures, and one-pass verification (stream).

Data is signed using the following process:

= anempty SignedData structure is created, with version set to vl, and signedContentType set to
the appropriate value
= the signed data can either be enclosed in an OCTET STRING and included in the SignedData structure,
or left aside (detached or external signature)
= each signer does:
0 choose the preferred hash algorithms: one to digest the signed content, one to digest the
attributes

0 optionally include those hash algorithm identifiers in the hashAlgorithms collection, in order
to facilitate the one-pass signature verification

0 digest the signed content and store the result in an Attribute structure of type attr-
messageDigest

O create an Attribute structure of type attr-contentType containing
the signedContentType value

0 create a SignerInfo structure containing:

17

= the 2 precedent Attribute structures in the signedAttributes collection
= an optional Attribute of type attr-signingTime in
the signedAttributes collection

= the signerldentifier set to the appropriate value
= optionally the certificate chain in order to validate the signer

= the digestAlgorithm equal to the hash algorithm used to digest the signed content
= the signatureAlgorithm set to the signature algorithm used by the signer
= the signature value, result of the signature operation applied to the serialization of
the signedAttributes structure
0 include the composed Signerlinfo structure in the signerinfos collection
It is important that the attr-messageDigest and attr-contentType attributes are included in the

signedAttributes. Their presence is mandatory. The attr-signingTime is optional, and can be required
depending on the context.

SignedData ::= SEQUENCE {
version Version DEFAULT vi1,
hashAlgorithms HashAlgorithmsldentifiers,
signedContentType ContentType,
signedContent OCTET STRING OPTIONAL,
signerinfos Signerinfos }

HashAlgorithmsldentifiers ::= SEQUENCE OF HashAlgorithmldentifier
Signerinfos ::= SEQUENCE OF SignerliInfo
SigneriInfo ::= SEQUENCE {

version Version DEFAULT vi,

signer [0] Signerldentifier DEFAULT self:NULL,

digestAlgorithm [1] HashAlgorithmldentifier DEFAULT { algorithm id-sha256 },

signatureAlgorithm [2] SignatureAlgorithmldentifier DEFAULT { algorithm ecdsa-
with-SHA256 },

signedAttributes SignedAttributes,

certificateChain SEQUENCE OF Certificate OPTIONAL,

signature SignatureValue }

Signerldentifier ::= CHOICE {
self NULL,
certificateDigest CertificateDigest,
certificate Certificate }

CertificateDigest ::= SEQUENCE {
algorithm HashAlgorithmldentifier DEFAULT { algorithm id-sha256 },
digest Hashedld8 }

SignedAttributes ::= SEQUENCE OF Attribute

Attribute ::= SEQUENCE {

18

attrType ATTRIBUTE.&id({SupportedAttributes}),
attrValue ATTRIBUTE.&Type({SupportedAttributes}{@attrType}) OPTIONAL }

SignatureValue OCTET STRING

-- SignatureValue should be opaque to the user/caller of security functions.
-- Internally, an ECDSA signature contains the following structure:

Ecdsa-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER }

3.2.5 EncryptedData type

Data is encrypted to a number of recipients following this process:

= The sender chooses a content encryption algorithm and parameters.

= The sender randomly generates a content encryption symmetric key.

= The sender encrypts this content encryption symmetric key for each recipient.

= For each recipient, a corresponding RecipientlInfo structure is built.

= The content is encrypted using chosen algorithm, parameters, and content encryption symmetric key.

= The encrypted content, encryption algorithm parameters, and all Recipientinfo instances are
collected together to form an EncryptedData structure.

When the recipient is identified by its public key and not by its certificate(for example when the recipient
requests a certificate), the recipients field of type Hashed1d8 shall be calculated as the 8 lowest order octets
of the SHA256 digest of the encoded public key in compressed form.

If the encrypted <content is to be transmitted outside of this EncryptedData structure,
the EncryptedData structure can be used to transport the encrypted symmetric encryption key and encryption
parameters. The encryptedContent element is optional.

EncryptedData ::= SEQUENCE {
version Version DEFAULT vi1,
recipients Recipientinfos,
encryptedContentType ContentType,
encryptionAlgorithm ContentEncryptionAlgorithmldentifier,
encryptedContent OCTET STRING OPTIONAL }

Recipientinfos ::= SEQUENCE SIZE (1..MAX) OF Recipientinfo

Recipientinfo ::= SEQUENCE {
recipient Hashedlds8,
kexalgid KeyEncryptionAlgorithmldentifier DEFAULT { algorithm id-ecies-103097 },
encryptedKeyMaterial OCTET STRING }

If kexalgid is the algorithm identified by id-ecies-103097, then the encryptedKeyMaterial shall contain the
serialization of an ECIESEncryptedKey103097 data type.

19

3.2.6 Certificate Revocation List

The Certificate Revocation List (CRL) is generated and signed by the RCA component.
ASN.1 notation definition

Crl ::= SEQUENCE {
unsigned_crl ToBeSignedCrl,
signature_algorithm SignatureAlgorithmldentifier,
signature Signature } -- signature is applied on unsigned_crl

ToBeSignedCrl ::= SEQUENCE {
version Version,
signer Signerldentifier,
-- ca_id Hashedld8, -- redondant si le modele crl_signer n"est pas supporté)
thisUpdate Time32,
nextUpdate Time32,
entries SEQUENCE OF Hashedld8 }

3.2.7 Trust-service Status List

ASN.1 notation definition

Tsl ::= SEQUENCE {
unsigned_tsl ToBeSignedTsl,
signature_algorithm SignatureAlgorithmldentifier,
signature SignatureValue }

-- signature is applied on unsigned_tsl

ToBeSignedTsl ::= SEQUENCE {
version Version,
signer_info Signerldentifier,
notBefore Time32,
notAfter Time32,
trust_services SEQUENCE OF TrustService }

TrustService ::= SEQUENCE {
serviceld TRUSTSERVICE.&id ({TrustServiceSet}),
serviceValue TRUSTSERVICE.&Value ({TrustServiceSet}{@serviceld}) }

TrustServiceSet TRUSTSERVICE ::=
{ ts-foreignRoot
ts-renewedRoot

|

| ts-ea

| ts-aa

| ts-distributionCenter

| ts-otherTslPointer

s --- 1}

TRUSTSERVICE ::= CLASS {

&id ENUMERATED UNIQUE,
&Value }

WITH SYNTAX {
SYNTAX &Value
ID &id }

20

ts-foreignRoot TRUSTSERVICE ::=
SYNTAX Certificate
ID ServiceType:foreignRoot }

ts-renewedRoot TRUSTSERVICE ::=
SYNTAX SEQUENCE {
rootCertificate Certificate,
linkRootCertificate Certificate }
ID ServiceType:renewedRoot }

ts-ea TRUSTSERVICE ::= {
SYNTAX SEQUENCE {
certificate Certificate,
linkedCertificate Certificate OPTIONAL,
accessPoint IASSTRING }
ID ServiceType:ea }

ts-aa TRUSTSERVICE ::= {

SYNTAX SEQUENCE {
certificate Certificate,
accessPoint IASSTRING }

ID ServiceType:aa }

ts-distributionCenter TRUSTSERVICE ::=
SYNTAX TAS5STRING
ID ServiceType:distributionCenter }

ts-otherTslPointer TRUSTSERVICE ::= {
SYNTAX TAS5STRING
ID ServiceType:otherTslPointer }

ServiceType ::= ENUMERATED {
foreignRoot,
renewedRoot,
ea,
aa,
distributionCenter,
otherTslPointer,

R

3.2.8 Mapping with ETSI Standards

Some data types defined in ETSI TS 103097 and used in this protocol need to be redefined in ASN.1 notation:

Hashedld8 ::= OCTET STRING (SIZE(8))
Certificate ::= OCTET STRING
Time32 ::= INTEGER (0..4294967295)

The types SubjectAttribute, ValidityRestriction, verification_key and its_aid_ssp_list are defined
in ETSI TS 103097.

A vector of SubjectAttribute elements as used by this protocol will be represented by the
SubjectAttributes type. The content of an element of this data type will be the binary serialization of a
variable-length vector with variable-length length encoding of SubjectAttribute elements. Similarly, a vector

21

of validityRestriction elements will be represented by the validityRestrictions type, and the content
of an element of this data type will be the binary serialization of a variable-length vector with variable-length
length encoding of ValidityRestriction elements.

SubjectAttributes ::= OCTET STRING
ValidityRestrictions ::= OCTET STRING

For example, a vector of 2 SubjectAttribute elements (a verification_key and an its_aid_ssp_list
composed of 2 ITS-AID-SSP) will be encoded as the octet
string “30000002C43CDAOAD74CC8A93141DBE4F2C353EDB8DD416DB14F1766A638E00B7EE2A752210B24030
10000250401000000", which is decomposed as:

30 (variable-length length of the vector)

00 (type=verification_key)
{ <PublicKey>
00 (algorithm=ecdsa_nistp256_with_sha256)
{ <EccPoint>
02 (type=compressed_Isb_y 0)
C43CDAOAD74CC8A93141DBE4F2C353EDB8DD416DB14F1766A638EOOB7EE2A752 (%)
}

b
21 (type=its_aid_ssp_list)

OB (variable-length length of the vector)
{
24 (its_aid=CAM)
03 (variable-length length of the SSP)
010000 (service_specific_permissions)
25 (its_aid=DENM)
04 (variable-length length of the SSP)
01000000 (service_specific_permissions)

3.3 PKI Requests

3.3.1 Create RCA certificate

RCA generates its key pair and generates its self-signed certificate under trusted roles control.

3.3.2 Create Authority (LTCA/PCA) certificate

LTCA and PCA requests are transmitted by an off-band mechanism to the RCA entity.

3.3.2.1 Request format

ITSCertificateRequest data type defines a standalone certificate request, which can be used to transport
LTCA or PCA certificate request to the RCA.

ITSCertificateRequest ::= SEQUENCE {
itsCertReq ITSCertificateRequestContent,
signatureAlgorithm SignatureAlgorithmldentifier DEFAULT { algorithm ecdsa-with-SHA256

signature SignatureValue }

ITSCertificateRequestContent ::= SEQUENCE {
version Version DEFAULT vi1,

22

subjectName OCTET STRING (SIZE(O..32)),
subjectAttributes OCTET STRING,
validityRestrictions OCTET STRING }

The following profile shall apply:

= versionissettovl (0)

* subjectAttributes shall contain the serialization of a subjectAttributes data type and shall contain
both a verification_key and an encryption_key elements

= validityRestrictions shall contain the serialization of the validity restrictions data type

= the signature is applied to the itsCertReq field using the private key corresponding to the public key
declared as verification_key (i.e. the request is self-signed)

subject_attributes and validity restrictions are definedin [1].

3.3.3 Request of a Long Term Certificate (LTC)

: POST http://<ea_access_point>

- Inputs:

- Content-type: application/x-its-request

¢ Content: binary encoded EnrolmentRequest object
Outputs:

- * Content-type: application/x-its-response

¢ Content: binary encoded EnrolmentResponse object

3.3.3.1 Request format

The ITS-S must build its LTC request by following this process:

= an ECC private key is randomly generated (the response-decryption-key), the corresponding public key is
computed (response-encryption-key)
= an InnerECRequest structure is built, containing:
0 arandomly generated requestldentifier
the canonical identifier of the ITS-S
the desired attributes
some optional restrictions
the response-encryption-key
nedData structure is built, with:
the signedContentType set to id-1TS-1SE-ct-EnrolmentRequest
the signedContent containing the InnerECRequest
the signedAttributes collection containing an attr-signingTime attribute
the signer declared as self
0 the signature computed using the canonical private key
= an EncryptedData structure is built, with:
0 the recipients is the LTCA, the recipient public key to use is the encryption_key of the LTCA
certificate
0 the encryptedContentType set to id-1TS-1SE-ct-SignedData
0 the encryptedContent containing the encrypted representation of the SignedData structure
= a Data structure is built, with:

= asSi

O 00 0@ OO0 0O

23

o the contentType set to id-1TS-I1SE-ct-EncryptedData
0 the content containing the EncryptedData structure

InnerECRequest ::= SEQUENCE {

requestldentifier OCTET STRING (SIZE(16)),

itsld IA5String,

wantedSubjectAttributes SubjectAttributes,
wantedValidityRestrictions ValidityRestrictions OPTIONAL,
responseEncryptionKey PublicKey }

wantedSubjectAttributes is the serialization of the subject_attributes structure defined in ETSI Standard [1];
it must contain exactly one instance of the following elements:

= averification_key,
= anits_aid_ssp_list

wantedValidityRestrictions is the serialization of the subject validity restrictions defined in ETS
Standard [1]; this field is optional because the LTCA already knows the ITS-S and can set duration and region
restrictions on its own.

The requestldentifier can be reused by the ITS-S if network connectivity has been lost during the
transaction. In that case, it is expected to send the exact same request.

Security characteristics

= |dentity is ensured by the itsld present in the request.

= Integrity is ensured by the signature and verified by checking the signature against the canonical public key
associated to this itsld.

= Confidentiality is ensured by encrypting the request with the encryption public key of the LTCA certificate.

= Anonymity of the requestor toward an external attacker is ensured by the confidentiality of the request
and its signature. Anonymity of the requestor toward the LTCA is not a concern (LTCA must know and
recognize the requestor).

3.3.3.2 Response format

The ITS-S shall receive a Data structure, containing an EncryptedData structure, containing a SignedData
structure, containing an InnerECResponse structure. In some specific error cases, the EncryptedData structure
can be missing, for example if the LTCA hasn’t been able to read or validate the responseEncryptionKey in the
request.

= if the LTCA has been able to read and to validate the responseEncryptionKey in the request:

o the outermost structure is a Data structure with its contentType set to id-ITS-ISE-ct-
EncryptedData

0 the content octet string contains an EncryptedData structure, with:
0 recipients references the responseEncryptionkey set in the request, the recipient
identifier is computed as described in section EncryptedData
0 theencryptedContentType is set to id-1TS-1SE-ct-SignedData
0 the encryptedContent, once decrypted, contains a SignedData structure
= if the LTCA hasn’t been able to read and validate the responseEncryptionKey in the request:

o the outermost structure is a Data structure with its contentType set to #id-ITS-ISE-ct-
SignedData

0 the content contains a SignedData structure
In both cases, this expected SignedData structure is:

= the signedContentType is set to id-1TS-1SE-ct-EnrolmentResponse
® the signedContent contains the InnerECResponse

24

= the signer is populated with the certificateDigest field, containing the HashedId8 of the LTCA
= the signature is computed using the LTCA certificate private verification key corresponding to its public
verification_key found in the LTCA certificate

The InnerECResponse shall contain:

= the requestHash is the left-most 16 octets of the SHA256 digest of the Data structure received in the
request

® aresponseCode indicating the result of the request

= if responseCode is 0, indicating a positive response, then a certificate is returned, and optionally a CA
contribution value for the ITS to compute its private key of his LTC certificate (implicit certificates using
ECQV).

= if responseCode is different than 0, indicating a negative response, then no certificate and no CA
contribution value will be returned.

InnerECResponse ::= SEQUENCE {
requestHash OCTET STRING (S1ZE(16)),
responseCode EnrolmentResponseCode,
certificate OCTET STRING OPTIONAL,
cAContributionValue INTEGER OPTIONAL }
-- requestHash is a truncated SHA256 of the whole Data structure received

EnrolmentResponseCode ::= ENUMERATED {
ok(0),
cantparse, -- valid for any structure
badcontenttype, -- not encrypted, not signed, not enrolmentrequest
imnottherecipient, -- the "recipients' doesn"t include me
unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
decryptionfailed, -- works for ECIES-HMAC and AES-CCM
unknownits, -- can"t retrieve the ITS from the itsld
invalidsignature, -- signature verification of the request fails
invalidencryptionkey, -- signature is good, but the responseEncryptionKey is bad
baditsstatus, -- revoked, not yet active
incompleterequest, -- some elements are missing
deniedpermissions, -- requested permissions are not granted
invalidkeys, -- either the verification_key of the encryption_key is bad
deniedrequest, -- any other reason?

- 3

Security characteristics

= |dentity is ensured by the signer identifier of the SignedData structure (contains the Hashedld8 of the LTCA
certificate).

= Integrity is ensured by the signature and verified by checking the signature against the verification_key
of the LTCA certificate.

= Confidentiality is ensured by encrypting the response with the responseEncryptionKey provided in the
request. If this key was not valid, confidentiality is not ensured, but no personal information is returned.

= Anonymity of the requestor toward an external attacker is ensured by the absence of identifiable
information returned when no encryption is possible, and by encryption of the response where possible.

3.3.4 Request of a Pseudonym Certificate (PC)

POST http://aa_access_point

Inputs:

25

e Content-type: application/x-its-request

¢ Content: binary encoded AuthorizationRequest object
Outputs:
e Content-type: application/x-its-response

¢ Content: binary encoded AuthorizationResponse object

3.3.4.1 Request format
The ITS-S must build its PC request by following this process:

= an ECC private key is randomly generated (the response-decryption-key), the corresponding public key
is computed (response-encryption-key)

= arandom 32 octets long secret key (hmac-key) is generated

= atag using the HMAC-SHA256 function is computed using the previously generated hmac-key, on the
concatenation of the serialization of verificationKey and encryptionKey elements (encryptionKey
is optional); this tag is truncated to 128 bits and named keyTag

= a SharedATRequest structure is built, with:

O arandomly generated requestldentifier

0 the eald identifying the LTCA to contact for verification
0 the calculated keyTag
0 the desired attributes
O some optional restrictions
O adesired start date and time
0 the response-encryption-key
= a SignedData structure is built, with:
o the signedContentType set to id-1TS-1SE-ct-SharedATRequest
0 the signedAttributes collection containing an attr-signingTime attribute
0 the signedContent is absent (external signature)
0 the signer declared as a certificateDigest referencing the LTC

0 the signature computed using the LTC certificate verification private key
® an EncryptedData structure is built, with:
0 the recipient is the LTCA, the recipient public key to use is the encryption_key of the LTCA
0 the encryptedContentType set to id-1TS-1SE-ct-SignedData
0 the encryptedContent containing the encrypted representation of the
previous SignedData structure

= an InnerATRequest structure is built, containing:
0 theverificationKey requested for certification
0 anoptional encryptionKey to be placed in the same certificate
0 the generated hmac-key

0 the signedByEC containing the SharedATRequest structure
0 the detachedEncryptedSignature containing the previous EncryptedData structure
= an EncryptedData structure is built, with:
0 the recipients is the PCA, the recipient public key to use is the encryption_key of the PCA
0 the encryptedContentType set to id-1TS-1SE-ct-AuthorizationRequest

26

0 the encryptedContent containing the encrypted representation of
the InnerATRequest structure
= a Data structure is built, with:
o the contentType set to id-1TS-1SE-ct-EncryptedData
0 the content containing the previous EncryptedData structure

wantedSubjectAttributes shall not contain a verification_key or an encryption_key attribute, but
shall contain an its_aid_ssp_list attribute.

SharedATRequest ::= SEQUENCE {
requestldentifier OCTET STRING (SI1ZE(16)),
eald Hashedld8,
keyTag OCTET STRING (SI1ZE(16)),
wantedSubjectAttributes SubjectAttributes,
wantedValidityRestrictions ValidityRestrictions OPTIONAL,
wantedStart Time32,
responseEncryptionKey PublicKey }

InnerATRequest ::= SEQUENCE {
verificationKey PublicKey,
encryptionKey PublicKey OPTIONAL,
hmacKey OCTET STRING (S1ZE(32)),
signedByEC SharedATRequest,
detachedEncryptedSignature EncryptedData }

The figure 3 illustrates the structure of a PC request.

=

Figure 3: Structure of a PC request

Security characteristics

= |dentity is ensured by the signer identifier present in the encrypted signature.

= Integrity is ensured by the signature and verified by checking the signature against the public key
associated to this signer (found in the corresponding LTC). The signature indirectly covers the
verificationKey and encryptionKey elements, by their digests (second pre-image resistance of the

27

hash function, which is greater than the collision resistance used in signatures). The PCA cannot verify
the signature, only the LTCA can do it, but the PCA can verify the requested permissions, and can verify
that the HMAC signature of the public keys match the given keyTag.

Confidentiality toward an external attacker is ensured by encrypting the request to the encryption key
of the PCA.

Anonymity of the requestor toward an external attacker is ensured by the confidentiality of the
request and its signature. Anonymity of the requestor toward the PCA is ensured by the additional
encryption of the signature and the signer. Anonymity of the requestor toward the LTCA isn't a concern
(the LTCA must know and recognize the requestor).

Unlinkability of the pseudonym certificates toward an external attacker is ensured by the
confidentiality characteristics. Unlinkability of the pseudonym certificates toward the PCA is ensured by
the additional encryption of the signature and the signer. Unlinkability of the pseudonym certificates
toward the LTCA is ensured by hiding the final public keys to certify from the LTCA.

3.3.4.2 Response format

The ITS-S shall receive a Data structure, containing an EncryptedData structure, containing a SignedData
structure, containing an InnerATResponse structure. In some specific error cases, the EncryptedData structure
can be missing, for example if the PCA hasn't been able to read or validate the responseEncryptionKey in the
request.

if the PCA has been able to read and validate the responseEncryptionKey in the request:

O the outermost structure is a Data structure with its contentType set to id-I1TS-ISE-ct-
EncryptedData

0 the content octet string contains an EncryptedData structure, with:
= recipients references the responseEncryptionKey set in the request, the recipient
identifier is computed as described in section EncryptedData
= the encryptedContentType is set to id-1TS-1SE-ct-SignedData
= the encryptedContent, once decrypted, contains a SignedData structure
if the PCA hasn't been able to read and validate the responseEncryptionKey in the request:

O the outermost structure is a Data structure with its contentType set to id-I1TS-ISE-ct-
SignedData

O the content contains a SignedData structure

In both cases, this expected SignedData structure is:

the signedContentType is set to id-1TS-1SE-ct-AuthorizationResponse

the signedContent contains the InnerATResponse

the signer is populated with the certificateDigest field, containing the HashedId8 of the PCA

the signature is computed using the PCA private key corresponding to its public verification_key
found in the PCA certificate

The InnerATResponse shall contain:

the requestHash is the left-most 16 octets of the SHA256 digest of the Data structure received in the
request

a responseCode indicating the result of the request

if responseCode is 0, indicating a positive response, then subjectAssurance, startDate and endDate
are returned to be set in corresponding PC

if responseCode is different than 0, indicating a negative response, then no subjectAssurance, no
startDate, and no endDate are returned

InnerATResponse ::= SEQUENCE {

28

requestHash OCTET STRING (S1ZE(16)),
responseCode AuthorizationResponseCode,
certificate Certificate OPTIONAL,
cAContributionValue INTEGER OPTIONAL }

-- requestHash is a truncated SHA256 of the whole Data structure received

AuthorizationResponseCode ::= ENUMERATED {
ok(0), -- ITS->AA
its-aa-cantparse, -- valid for any structure
its-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest
its-aa-imnottherecipient, -- the "recipients” doesn®"t include me
its-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

its-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM
its-aa-keysdontmatch, -- HMAC keyTag verification fails

doesn"t include me

signature

its-aa-incompleterequest, -- some elements are missing
its-aa-invalidencryptionkey, -- the responseEncryptionKey is bad
its-aa-outofsyncrequest, -- signingTime is outside acceptable limits
its-aa-unknownea, -- the EA identified by eald is unknown to me
its-aa-invalidea, -- the EA certificate is revoked

its-aa-deniedpermissions, -- 1, the AA, deny the requested permissions -- AA->EA
aa-ea-cantreachea, -- the EA is unreachable (network error?) -- EA->AA
ea-aa-cantparse, -- valid for any structure

ea-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest
ea-aa-imnottherecipient, -- the "recipients'" of the outermost encrypted data
ea-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
ea-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM -- TODO: continuer
invalidaa, -- the AA certificate presented is invalid/revoked/whatever
invalidaasignature, -- the AA certificate presented can"t validate the request
wrongea, -- the encrypted signature doesn®t designate me as the EA

unknownits, -- can"t retrieve the EC/ITS in my DB

invalidsignature, -- signature verification of the request by the EC fails
invalidencryptionkey, -- signature is good, but the key is bad
deniedpermissions, -- permissions not granted

deniedtoomanycerts, -- parallel limit

--- }

Security characteristics

= |dentity is ensured by the signer identifier of the SignedData structure (contains the Hashedld8 of the
PCA’s certificate).

= Integrity is ensured by the signature and verified by checking the signature against the
verification_key of the PCA.

= Confidentiality is ensured by encrypting the response to the responseEncryptionKey provided in the
request. If this key wasn't valid, confidentiality isn't ensured, but no personal information is returned.

= Anonymity of the requestor toward an external attacker is ensured by the absence of identifiable
information returned when no encryption is possible, and by encryption of the response when
possible.

3.3.5 Validate Pseudonym Certificate (PC) request

POST http://ea_access_point

Inputs:

¢ Content-type: application/x-its-request

¢ Content: binary encoded Authorizationval idationRequest object

29

Outputs:
e Content-type: application/x-its-response

¢ Content: binary encoded AuthorizationVal idationResponse object

3.3.5.1 Request format
The PCA must build its permissions verification request by following this process:

= an ECC private key is randomly generated (the response-decryption-key), the corresponding public key
is computed (response-encryption-key)
= an AuthorizationValidationRequest structure is built, with:
0 arandomly generated requestldentifier
0 the sharedATRequest containing the signedByEC submitted in the pseudonym certificate
request
the detachedEncryptedSignature submitted in the same pseudonym certificate request
the responseEncryptionKey
nedData structure is built, with:
the signedContentType set to id-1TS-1SE-ct-AuthorizationvalidationRequest
the signedContent containing the AuthorizationvalidationRequest
the signedAttributes collection containing an attr-signingTime attribute
the signer declared as certificate and contains the PCA certificate
0 the signature is computed using the PCA signature private key
® an EncryptedData structure is built, with:
0 therecipient is the LTCA, the recipient’s public key to use is the encryption_key of the LTCA
0 the encryptedContentType set to id-1TS-1SE-ct-SignedData
0 the encryptedContent containing the encrypted representation of the SignedData structure
= 3 Data structure is built, with:
0 the contentType set to id-1TS-1SE-ct-EncryptedData
0 the content containing the EncryptedData structure

= asSi

O 0o og OO0

AuthorizationValidationRequest ::= SEQUENCE {
requestldentifier OCTET STRING (SI1ZE(16)),
sharedATRequest SharedATRequest,
detachedEncryptedSignature EncryptedData,
responseEncryptionKey PublicKey }

The figure 4 illustrates the structure of PC validation request.

30

I\I1||III

il

i

Figure 4: The structure of PC validation request

Security characteristics

= |dentity is ensured by the PCA certificate used as the signer identifier in the SignerInfo structure.

= Integrity is ensured by the signature and verified by checking the signature against the verification
public key assessed in this certificate. The validity of the requestor PCA is verified by chaining the
certificate to a trusted root.

= Confidentiality is ensured by encrypting the request with the encryption public key of the LTCA
certificate.

= Anonymity of the ITS-S toward an external attacker is ensured by the confidentiality of the request.

3.3.5.2 Response format

The PCA shall receive a Data structure, containing an EncryptedData structure, containing a SignedData
structure, containing an AuthorizationValidationResponse structure. In some specific error cases, the
EncryptedData structure can be missing, for example if the LTCA hasn't been able to read or validate the
responseEncryptionKey in the request.

= if the LTCA has been able to read and validate the responseEncryptionKey in the request:

0 the outermost structure is a Data structure with its contentType set to id-I1TS-ISE-ct-
EncryptedData

0 the content octet string contains an EncryptedData structure, with:
= recipients references the responseEncryptionKey set in the request, the recipient
identifier is computed as described in section EncryptedData
= the encryptedContentType is set to id-1TS-1SE-ct-SignedData

31

* the encryptedContent, once decrypted, contains a SignedData structure
if the LTCA is not able to read and to validate the responseEncryptionKey inthe request:

0 the outermost structure is a Data structure with its contentType set to id-I1TS-ISE-ct-
SignedData
0 the content contains a SignedData structure

In both cases, the expected SignedData structure is:

The 1

the signedContentType is set to id-1TS-1SE-ct-Authorizationval idationResponse

the signedContent contains the AuthorizationvalidationResponse

the signer is populated with the certificateDigest field, containing the Hashedld8 of the LTCA
certificate.

the signature is computed using the LTCA private key corresponding to its public verification_key
found in the LTCA certificate

nnerATResponse shall contain:

= the requestHash is the left-most 16 octets of the SHA256 digest of the Data structure received in
the request
= aresponseCode indicating the result of the request

AuthorizationValidationResponse ::= SEQUENCE {
requestHash OCTET STRING (S1ZE(16)),
responseCode AuthorizationValidationResponseCode,
subjectAssurance SubjectAssurance OPTIONAL,
startDate [0] Time32 OPTIONAL,
endDate [1] Time32 OPTIONAL }

-- requestHash is a truncated SHA256 of the whole Data structure received

AuthorizationVal idationResponseCode ::= ENUMERATED {
ok(0),
cantparse, -- valid for any structure
badcontenttype, -- not encrypted, not signed, not permissionsverificationrequest
imnottherecipient, -- the "recipients” of the outermost encrypted data doesn®t
include me
unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
decryptionfailed, -- works for ECIES-HMAC and AES-CCM
invalidaa, -- the AA certificate presented is invalid/revoked/whatever
invalidaasignature, -- the AA certificate presented can"t validate the request
signature
wrongea, -- the encrypted signature doesn”"t desighate me as the EA
unknownits, -- can"t retrieve the EC/ITS in my DB
invalidsignature, -- signature verification of the request by the EC fails
invalidencryptionkey, -- signature is good, but the responseEncryptionKey is bad
deniedpermissions, -- requested permissions not granted
deniedtoomanycerts, -- parallel limit
deniedrequest, -- any other reason?
- 3

Security characteristics

Identity is ensured by the signer identifier of the SignedData structure (contains the Hashedld8 of the

LTCA).
Integrity is ensured by the signature and verified by checking the signature against the

verification_key of the LTCA certificate.

32

= Confidentiality is ensured by encrypting the response with the responseEncryptionKey provided in
the request. If this key wasn't valid, confidentiality isn't ensured, but no personal information is
returned.

= Anonymity of the ITS-S requesting a pseudonym certificate toward an external attacker is ensured by
the absence of identifiable information returned when no encryption is possible, and by encryption of
the response when possible.

3.3.6 Get CRL

GET http://dc_access_point/getcrl/Hashed!d8

The abs_path part of the HTTP request is built by taking the DC access point (from the TSL or from an ad-hoc
configuration), appending “/getcrl/”, and the uppercase hexadecimal representation of Hashed|d8.

Inputs:

e No inputs
- Outputs:

| * Content-type: application/x-its-crl

Content: binary encoded CRL object issued by the entity identified byHashedld8

The format of CRL is described in section 3.2.6.

3.3.7 GetTSL

GET http://dc_access_point/gettsl/Hashedld8

The abs_path part of the HTTP request is built by taking the DC access point (from the TSL or from an ad-hoc
configuration), appending “/gettsl/”, and the uppercase hexadecimal representation of HashedId8.

Inputs:

e No inputs

Outputs:

e Content-type: application/x-its-tsl

¢ Content: binary encoded TSL object issued by the entity identified by Hashedld8

The format of TSL is described in section 3.2.7.

Appendix A: Examples of request

1. Long Term Certificate request example

The ITS-S whose canonical ID "Renault-123456" requests an LTC usable for CAM and DENM with some
permissions, and no validity restriction. The InnerECRequest content is:

innerecreq InnerECRequest ::= {
requestldentifier "E665759B9756D789FCCB1B2577E46A66"H,
itsld "Renault-123456",
wantedSubjectAttributes "30
000002D50E7A16DEF1F5E2FB22F85EDS8FC4E9F8D22404061EE6F22290280807CC223F2
21092403010000250401000000"H, -- a verification_key and 2 ITSAIDSSP (CAM&DENM)

33

responseEncryptionkKey {
type compressed-I1sb-y-0,
X "77BCBC87A68ECFES8CD7DD6CDC0320A9806996CF5A08D72C3226450E68BF33BD0 " H
bs
¥

The DER encoding of this innerecreq is the following octet stream, 126 octets long, here beautified for
readability

30 7C -- InnerECRequest
04 10 E665759B9756D789FCCB1B2577E46A66 -- requestldentifier
16 OE 52656E61756C742D313233343536 -- itsld
04 31
30000002D50E7A16DEF1F5E2FB22F85ED8FC4E9F8D22404061EE6F22290280807CC223F221092403010000250401
000000 -- wantedSubjectAttributes
30 25 -- responseEncryptionKey
OA 01 02 -- type
02 20 77BCBC87A68ECFESCD7DD6CDCO320A9806996CF5A08D72C3226450E68BF33BD0 —- X

This PDU is then encapsulated in a SignedData structure:

signedreq SignedData ::= {
version vi,
hashAlgorithms {
{ algorithm id-sha256 }

signedContentType id-ITS-ISE-ct-EnrolmentRequest,
signedContent "... here goes the innerecreq ..."H,
signerinfos {
{

version vl,

signer self:NULL,

digestAlgorithm { algorithm id-sha256 },

signatureAlgorithm { algorithm ecdsa-with-SHA256 },

signedAttributes {

attrType id-messageDigest,
attrValue OCTET STRING ::=
"AA349D9F1817AF5C662B04250427B3E2D07A027FD8AEA70114783661EASDB11D"H -- SHA256 digest value
of innerecreq
3
{

attrType id-contentType,
attrValue OBJECT IDENTIFIER ::= id-1TS-1SE-ct-EnrolmentRequest
3
{
attrType id-signingTime,
attrValue INTEGER ::= 1426674524 -- 18 march 2015 10:28:44 UTC
}
}.
-- no certificateChain
signature
"304502206982D1E49CAO0BCESFODB81FDFECO6FE3AAC4915394FA7F171AEDO76E443C655022100DF88B8CO8F5FA
3B57DEA4D66A5DBEDEF378CC7500D9F2DC13AC50BA0ODAADCF10™H
}
¥
}

The DER encoding of this signedreq is the following octet stream, 344 octets long:

30 82 0154 -- SignedData
30 OD -- hashAlgorithms
30 0B -- HashAlgorithmldentifier
06 09 608648016503040201 -- id-sha256
06 OC 2B0601040181AD5A04010104 -- id-ITS-1SE-ct-EnrolmentRequest
04 7E <...insert here the innerecreq...>
30 81 B4 -- Signerinfos

34

30 81 B1 -- Signerinfo
30 66 -- signedAttributes
30 30
06 OC 2B0601040181AD5A04010301 -- id-messageDigest
04 20 AA349D9F1817AF5C662B04250427B3E2D07A027FD8AEA70114783661EA5DB11D
30 1C
06 OC 2B0601040181AD5A04010302 -- id-ContentType
06 0OC 2B0601040181AD5A04010104
30 14
06 OC 2B0601040181AD5A04010303 -- id-signingTime
02 04 5509535C
04 47
304502206982D1E49CAO0BCESFIDB81FDFECO6FE3AAC4915394FA7F171AEDO76E443C655022100DF88B8CO8F5FA3
B57DEA4D66A5DBEDEF378CC7500D9F2DC13AC50BA0ODAADCF10 -- signature

This PDU is then encrypted using the AES-128-CCM mechanism with default ETSI TS103097 parameters (this
produces a 360 octets long octet string), and the AES key is encrypted using ECIES mechanism with default ETSI
TS103097 parameters to the LTCA identified by its Hashedld8='0001020304050607'H. The resulting
EncryptedData structure is built like this:

encryptedreq EncryptedData ::= {
version vil,
recipients {

recipient "0001020304050607"H,
kexalgid { algorithm id-ecies-103097 },
encryptedKeyMaterial
"304C30260A0103022100ABC4563E98E4395FC2D968E2ADA4A310D49D5D9E4CO29ECIFS5EDF13F6D8797CC04107F6
4B447AF6913833C1C5F5BF60131930410E93749FF54892F24533A1EE746EF23C2"H -~ contains an
ECIESEncryptedKey103097
}

3,
encryptedContentType id-1TS-1SE-ct-SignedData,
contentEncryptionAlgorithm {

algorithm aes-128-ccm-103097,

parameters { aes-nonce "000102030405060708090A0BOC"H }
3,
encryptedContent

}

The DER encoding of this encryptedreq is the following octet stream, 507 octets long:

30 82 01F7 -- EncryptedData
30 5C -- recipients
30 5A -- Recipientinfo
04 08 0001020304050607 --recipient
04 4E
304C30260A0103022100ABC4563E98E4395FC2D968E2ADA4A310D49D5D9E4CI929ECIF5EDF13F6D8797CC04107F64
B447AF6913833C1C5F5BF60131930410E93749FF54892F24533A1EE746EF23C2 -~ encryptedKeyMaterial
06 OC 2B0601040181AD5A04010102 -- id-ITS-1SE-ct-SignedData
30 1D -- encryptionAlgorithm
06 OC 2B0601040181AD5A04010201 -- ce-aes-128-ccm-103097
04 0D 000102030405060708090A0BOC -- aes-nonce
04 82 0168 <...insert here the encrypted signedreq...>

- here goes the encrypted signedreq ..."H

This PDU is then encapsulated in a Data structure, built like this:

enrolmentrequest Data ::= {
version vil,
contentType id-ITS-1SE-ct-EncryptedData,
content "... here goes the encryptedrec ..."H

}

The DER encoding of this enrolmentrequest is the following octet stream, 529 octets long:

30 82 020B -- Data
06 OC 2B0601040181AD5A04010103 -- id-I1TS-1SE-ct-EncryptedData

35

04 82 01FB <...insert here the encryptedreq...>

2. Pseudonym Certificate request example

An ITS-S requests an PC usable for CAM and DENM with some permission, no encryption key, and no validity
restrictions. First, a SharedATRequest is built:

sharedatreq SharedATRequest ::= {
requestldentifier "41E33B6C090187D2BAEOA4E8C5A77DC4"H,
eald "0001020304050607"H, -- the EA
keyTag "FASBECEAAOEG6ES5B6088DES2EDAD6F18F"H,
wantedSubjectAttributes "0D21092403010000250401000000"H, -- 2 ITSAIDSSP (CAM&DENM)
-- no wantedValidityRestrictions
wantedStart 1426723200, -- 19 march 2015 00:00:00 UTC
responseEncryptionKey {
type compressed-Isb-y-1,
X "F302F81307B7CA056023EA959EAB932D043AA7C86ACA6BAECESESF5FDC35AE4F"H
}
}

The DER encoding of this sharedatreq is the following octet stream, 110 octets long:

30 6C -- SharedATRequest
04 10 41E33B6C090187D2BAEOA4E8SC5A77DC4 -- requestldentifier
04 08 0001020304050607 -- eald
04 10 FASBECEAAOE6E5B6088DES2EDAD6F18F -- keyTag
04 OE 0D21092403010000250401000000 -- wantedSubjectAttributes
02 04 550A1180 -- wantedStart
30 26 -- responseEncryptionKey
OA 01 03 -- type
02 21 OOF302F81307B7CA056023EA959EAB932D043AA7C86ACA6B4ECES8EBFS5FDC35AE4F —- X

This sharedatreq needs to be signed, so a SignedData structure is built:

signedextsharedatreq SignedData ::= {
version vil,
hashAlgorithms {
{ algorithm id-sha256 }
}

signedContentType id-1TS-I1SE-ct-SharedATRequest,
-- no signedContent, this is an external signature
signerinfos {
{
version vil,
signer certificateDigest {
algorithm { algorithm id-sha256 },
digest "97583D6CE5C46B5E*"H -- this is the Hashedld8 of the EC
3,
digestAlgorithm { algorithm id-sha256 },
signatureAlgorithm { algorithm ecdsa-with-SHA256 },
signedAttributes {
{
attrType id-messageDigest,
attrValue OCTET STRING ::=
"01E10ED2BD3EOFFB451FD64036ED12A1B5942F78365CF39D5F22C9A3DF3F697AH —- SHA256 digest value
of sharedatreq

s
{
attrType id-contentType,
attrValue OBJECT IDENTIFIER ::= id-1TS-I1SE-ct-SharedATRequest
3
{
attrType id-signingTime,
attrValue INTEGER ::= 1426674528 -- 18 march 2015 10:28:48 UTC
}
s

-- no certificateChain

36

signature
"304402201C1B4CCA76525F1830A22E7E6BSF6ABEAABC72BOECAC175CEF6601CA35726AFD02205931C93E92E0DS8
BC6B43EBFE75F29B1BDD4289EBESE3467F2D640F800CC6234 " H

+
}
b

The DER encoding of this signedextsharedatreq is the following octet stream, 226 octets long:

30 81 DF -- SignedData
30 OD -- hashAlgorithms
30 0B -- HashAlgorithmldentifier
06 09 608648016503040201 -- id-sha256
06 OC 2B0601040181AD5A0401010A
30 81 BF -- signerlinfos
30 81 BC -- Signerinfo
30 OA -- signer
04 08 97583D6CE5C46B5E -- digest of EC
30 66 -- signedAttributes
30 30
06 OC 2B0601040181AD5A04010301 -- id-messageDigest
04 20 01E10ED2BD3EOFFB451FD64036ED12A1B5942F78365CF39D5F22C9A3DF3F697A
30 1C
06 OC 2B0601040181AD5A04010302 -- id-ContentType
06 0OC 2B0601040181AD5A0401010A
30 14
06 0C 2B0601040181AD5A04010303 -- id-signingTime
02 04 55095360
04 46
304402201C1B4CCA76525F1830A22E7E6B8F6ABEAABC72BOECAC175CEF6601CA35726AFD02205931C93E92E0D58B
C6B43EBFE75F29B1BDD4289EBESE3467F2D640F800CC6234 -- signature

This PDU is then encrypted using the AES-128-CCM mechanism with default ETSI TS103097 parameters (this
produces a 242 octets long octet string), and the AES key is encrypted using ECIES mechanism with default ETSI
TS103097 parameters to the LTCA identified by its Hashedld8='0001020304050607'H. The resulting
EncryptedData structure is built like this:

encryptedsignedextsharedatreq EncryptedData ::= {
version vil,
recipients {
{
recipient "0001020304050607"H,
kexalgid { algorithm id-ecies-103097 },
encryptedKeyMaterial
"304C30260A01030221008FE956196A3F36BD514AD219CAC462DC13B1F99CI8BEAFBCDEGC64269A55DA6C04108B5
B8BE36EAB36577F0B76270C45D1D8204103E05A6E942F0BEE2A12779BEBA7577EL"H —- contains an
ECIESEncryptedKey103097

}

3,
encryptedContentType id-1TS-I1SE-ct-SignedData,
contentEncryptionAlgorithm {

algorithm aes-128-ccm-103097,

parameters { aes-nonce "000102030405060708090A0BOD"H }
B
encryptedContent

- here goes the encrypted signedextsharedatreq ..."H

The DER encoding of this encryptedsignedextsharedatreq is the following octet stream, 372 octets long:

30 82 0170 -- EncryptedData
30 5C -- recipients
30 5A -- Recipientinfo
04 08 0001020304050607 --recipient
04 4E
304C30260A01030221008FE956196A3F36BD514AD219CAC462DC13B1F99CO8BEAFS8CDEGC64269A55DA6C04108B5B
8E36EAB36577F0B76270C45D1D8204103E05A6E942F0BEE2A12779BEBA7577E1 -- encryptedKeyMaterial
06 OC 2B0601040181AD5A04010102 -- id-ITS-1SE-ct-SignedData

37

30 1D -- encryptionAlgorithm
06 0OC 2B0601040181AD5A04010201 -- ce-aes-128-ccm-103097
04 0D 000102030405060708090A0BOD -- aes-nonce
04 81 E2 <...insert here the encrypted signedextsharedatreq...>

The sharedatreq, the encryptedsignedextsharedatreq, public keys, and HMAC key are then encapsulated in
an InnerATRequest:

inneratreq InnerATRequest ::= {
verificationKey {
type compressed-Isb-y-1,
X "AO09A3032AF6E9DCOOBF70A9E36C84275A1CA8087A12245A7EB5DE2B2C805166 "H
}.
-- no encryptionKey
hmacKey "60B316FD92AB81B793D5207F11AE34CF5AF6BA425A0B8395E2371DEB5479D3A2H,
signedByEC " ... here goes the sharedatreq ...°",
detachedEncryptedSignature "... here goes the encryptedsignedextsharedatreq ...

}
The DER encoding of this inneratreq is the following octet stream, 560 octets long:

30 82 022C -- InnerATRequest
30 26 -- verificationKey
OA 01 03 -- type
02 21 AOO09A3032AF6E9DCOOBF70A9E36C84275A1CA8087A12245A7EB5DE2B2C805166 -- X
-- no encryptionKey
04 20 60B316FD92AB81B793D5207F11AE34CF5AF6BA425A0B8395E2371DEB5479D3A2 -- hmacKey
30 6C <...insert here the rest of the sharedatreq...>
30 82 0170 <...insert here the rest of the encryptedsignedextsharedatreq...>

This PDU is then encrypted using the AES-128-CCM mechanism with default ETSI TS103097 parameters (this
produces a 576 octets long octet string), and the AES key is encrypted using ECIES mechanism with default ETSI
TS103097 parameters to the PCA identified by its Hashedld8='08090A0BOCODOEOF'H. The resulting
EncryptedData structure is built like this:

encryptedreq EncryptedData ::= {
version vil,
recipients {
{
recipient “08090A0BOCODOEOF*"H,
kexalgid { algorithm id-ecies-103097 },
encryptedKeyMaterial
"304B30250A01030220214A61E116D709ABB38E211253A55BC66110C713C1253799AA1981A015A158060410E5A48
7625B458D28C96782E5FDB378A90410A3956CDOBA50F814F8BB6B6B4BCC5ELF"H —- contains an
ECIESEncryptedKey103097

}

}.
encryptedContentType id-1TS-1SE-ct-AuthorizationRequest,
contentEncryptionAlgorithm {

algorithm aes-128-ccm-103097,

parameters { aes-nonce "000102030405060708090A0BOE"H }
}.

encryptedContent "... here goes the encrypted inneratreq ..."H

The DER encoding of this encryptedreq is the following octet stream, 722 octets long:

30 82 02CE -- EncryptedData
30 5B -- recipients
30 59 -- Recipientinfo
04 08 08090AOBOCODOEOF --recipient
04 4D
304B30250A01030220214A61E116D709ABB38E211253A55BC66110C713C1253799AA1981A015A158060410E5A487
625B458D28C96782E5FDB378A90410A3956CDOBA50F814F8BB6B6B4BCC5ELF -- encryptedKeyMaterial
06 OC 2B0601040181AD5A04010106 -- id-ITS-1SE-ct-AuthorizationRequest
30 1D -- encryptionAlgorithm
06 OC 2B0601040181AD5A04010201 -- ce-aes-128-ccm-103097

38

04 0D 000102030405060708090A0BOE -- aes-nonce
04 82 0240 <...insert here the encrypted inneratreq...>

This PDU is then encapsulated in a Data structure, built like this:

authorizationrequest Data ::= {
version vl,
contentType id-ITS-I1SE-ct-EncryptedData,
content "... here goes the encryptedrec ..."H

}

The DER encoding of this authorizationrequest is the following octet stream, 744 octets long:

30 82 02E4 -- Data
06 0OC 2B0601040181AD5A04010103 -- id-1TS-1SE-ct-EncryptedData
04 82 02D2 <...insert here the encryptedreq...>

39

Appendix B: Encryption of a message

This appendix describes cryptographic operations to be implemented to encrypt a message (any) according to
the mechanisms used in ETSI Standards [1]. Message encryption is used for example to communicate between
ITS-S and the PKI (LTCA / PCA), and between the PCA and LTCA entities of the PKI.

Encrypt a message m (N octets) from a sender to a receiver.

Assuming an elliptic curve (p: curve prime, G: base point, g: base point order).

Sender only knows the (certified) encryption public key “Kb” of the receiver.

KDF (): SHA256(S || counter)...
E (a,b):axorb

E-1(a, b):axorb

MAC (km, m): HMAC (km, m)

||: concatenation

= Sender generates a random AES key A (128 bits, 16 octets)

= Sender chooses a nonce n, 12 octets

= Sender encrypts the message m with AES-CCM mode, the key A, and the nonce n. The output is
the encrypted message M with an authentication tag (N+16 octets).

= Sender generates an ephemeral private key rin [1, g-1], and the associated public key v=r.G,
33 octets if compressed

= Sender derives a shared secret S from receiver encryption public key (Kb): S=Px, with (Px,
Py)=r.Kb (verify that P I=0,if not, back to previous step)

= Sender then derives a set of keys ke and km with derivation algorithm: (ke | | km)=KDF(S), ke is
16 octets long, km is 32 octets long

= Sender encrypts the AES key: c=E(ke, A), c is 16 octets long

= Sender produces a tag on the encrypted message: t=MAC(km, c), t is 16 octets long

= Sender transmits to the receiver a message C containing:

= The identifier for the recipient's certificate (cert_id), 8 octets

= The encrypted message M

= The encryption parameters (algorithm identifier aes_128 ccm, nonce n), 13 octets

= The ephemeral public key (v)

= The encrypted key (c) with the associated tag (t)

0 8+N+16+13+33+16+16: 102+N octets, plus protocol overheads.

= Receiver has its private key kb, and receives the message C.

= Receiver derives a shared secret S=Px, with (Px, Py)=kb.v

= Receiver derives (ke | | km)=KDF(S)

= Receiver checks that the tag t verifies MAC(km, c), if not, receiver returns an error message

40

Appendix C: ASN.1 module

ISEEnrolmentProtocolvl
{ iso(1) identified-organization(3) dod(6) internet(l) private(4)
enterprise(l) opentrust(22234) innovation(4) ise(1l) modules(0)
iseenrolmentprotocolvli(0) }

-- version BIT STRING { v1990(0), v1994(1), v1997(2) } ::= v1997

DEFINITIONS IMPLICIT TAGS ::=
BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use
-- In the other ASN.1 modules. Other applications may use them for
-- their own purposes.

IMPORTS
-- RFC5084 Appendix
aes, 1d-aesl128-CCM, id-aes256-CCM, AES-CCM-ICVlen
FROM CMS-AES-CCM-and-AES-GCM
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(0) cms-aes-ccm-and-gcm(32) }

-— RFC5480
ecdsa-with-SHA256, ecdsa-with-SHA384
FROM PKIX1Algorithms2008
{ iso(1) identified-organization(3) dod(6) internet(l)
security(5) mechanisms(5) pkix(7) id-mod(0) 45 }

-— RFC 4055 [RSAOAEP]
id-sha256, id-sha384
FROM PKIX1-PSS-OAEP-Algorithms
{ iso(1) identified-organization(3) dod(6) internet(l)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkixl-rsa-pkalgs(33) } ;

/************

-- OIDs

************/

-- For the ISE project, lets allocate OIDs under the OpenTrust arc

id-OpenTrust OBJECT IDENTIFIER ::= { iso(l) identified-organization(3) dod(6) internet(l)
private(4) enterprise(l) opentrust(22234) }

id-0OT-Innovation OBJECT IDENTIFIER ::= { id-OpenTrust 4 }

id-OT-Innovation-1SE OBJECT IDENTIFIER ::= { id-OT-Innovation 1 }

id-I1TS-I1SE-ct OBJECT IDENTIFIER ::= { id-OT-Innovation-ISE 1 }

id-I1TS-ISE-ct-Data OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 1 }

id-I1TS-ISE-ct-SignedData OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 2 }
id-1TS-1SE-ct-EncryptedData OBJECT IDENTIFIER ::= { id-I1TS-ISE-ct 3 }
id-1TS-ISE-ct-EnrolmentRequest OBJECT IDENTIFIER ::= { id-I1TS-ISE-ct 4 }
id-I1TS-ISE-ct-EnrolmentResponse OBJECT IDENTIFIER ::= { id-I1TS-I1SE-ct 5 }
id-1TS-I1SE-ct-AuthorizationRequest OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 6 }
id-1TS-ISE-ct-AuthorizationResponse OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 7 }
1d-1TS-ISE-ct-AuthorizationValidationRequest OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 8 }
1d-1TS-ISE-ct-AuthorizationValidationResponse OBJECT IDENTIFIER ::= { id-I1TS-1SE-ct 9 }
id-1TS-ISE-ct-SharedATRequest OBJECT IDENTIFIER ::= { id-ITS-ISE-ct 10 }
id-1TS-1SE-algos OBJECT IDENTIFIER ::= { id-OT-Innovation-ISE 2 }

id-aes128-CCM-103097 OBJECT IDENTIFIER ::= { id-ITS-I1SE-algos 1 }

id-ecies-103097 OBJECT IDENTIFIER ::= { id-1TS-ISE-algos 2 }

41

id-1TS-1SE-attrs OBJECT IDENTIFIER ::
id-messageDigest OBJECT IDENTIFIER ::
id-contentType OBJECT IDENTIFIER :
id-signingTime OBJECT IDENTIFIER :

= { 1d-0OT-Innovation-ISE 3 }
= { 1d-ITS-ISE-attrs 1 }

{ id-ITS-ISE-attrs 2 }

{ id-ITS-ISE-attrs 3 }

-- From FIPS 202 draft

id-sha3-256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
country(16) us(840) organization(l) gov(101)
csor(3) nistalgorithm(4) hashalgs(2) 8 }

/************

-- Misc

************/

Version ::= INTEGER { v1(0), v2(1) }
Hashedld8 ::= OCTET STRING (SI1ZE(8))

Time32 ::= INTEGER (0..4294967295)
SubjectAssurance ::= OCTET STRING (SIZE(1))
Certificate ::= OCTET STRING
SubjectAttributes ::= OCTET STRING
ValidityRestrictions ::= OCTET STRING
ContentType ::= OBJECT IDENTIFIER

PublicKey ::= SEQUENCE {
type ECCPublicKeyType,
x INTEGER }

ECCPublicKeyType ::= ENUMERATED {
compressed-1sb-y-0(2),
compressed-Isb-y-1(3) }

SignatureValue ::= OCTET STRING

-- SignatureValue should be opaque to the user/caller of security functions.
-- Internally, an ECDSA signature contains the following structure:
Ecdsa-Sig-Value ::= SEQUENCE {

r INTEGER,

s INTEGER }

/************

-- A generic class for an algorithm
************/
ALGORITHM ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Type OPTIONAL
} WITH SYNTAX {
ID &id
[PARMS &Type]

/************

-- Signature algorithms declarations

************/

sign-ecdsa-with-sha256 ALGORITHM ::= {
ID ecdsa-with-SHA256 }

sign-ecdsa-with-sha384 ALGORITHM ::= {
ID ecdsa-with-SHA384 }

-- No OID defined yet
-- sign-ecdsa-with-sha3-256 ALGORITHM ::= {
- ID ecdsa-with-SHA3-256 }

SignatureFunctions ALGORITHM ::=

{ sign-ecdsa-with-sha256
| sign-ecdsa-with-sha384

42

-- | sign-ecdsa-with-sha3-256

/************

-- Content encryption algorithm declarations

************/

CCMDefaultParameters ::= SEQUENCE {
aes-nonce OCTET STRING (SI1ZE(12)) }

ce-aes-128-ccm-103097 ALGORITHM ::= {
ID id-aes128-CCM-103097
PARMS CCMDefaultParameters }

CCMParameters ::= SEQUENCE {
aes-nonce OCTET STRING (SIZE(7..13)),
aes-1CVlen AES-CCM-ICVlen DEFAULT 12 }

ce-aes-128-ccm ALGORITHM ::= {
ID id-aes128-CCM
PARMS CCMParameters }

ce-aes-256-ccm ALGORITHM ::= {
ID id-aes256-CCM
PARMS CCMParameters }

DataEncryptionFunctions ALGORITHM ::=
{ ce-aes-128-ccm-103097
| ce-aes-128-ccm
| ce-aes-256-ccm

> --- }

/************

-- Key exchange algorithms declarations
************/

-- ECIESParameters ::= SEQUENCE {

-- kdf KeyDerivationFunction OPTIONAL,

-- sym SymmetricEncryption OPTIONAL,

-- mac MessageAuthenticationCode OPTIONAL }

-- ke-ecies ALGORITHM ::= {
-- ID ecies-specifiedParameters
-- PARMS ECIESParameters }

ECIESEncryptedKey103097 ::= SEQUENCE {
v PublicKey,
c OCTET STRING (SIZE(16)),
t OCTET STRING (SI1ZE(16)) }

ke-ecies-103097 ALGORITHM ::= {
ID id-ecies-103097 }

KeyEncryptionFunctions ALGORITHM ::=
{ ke-ecies-103097

-- | ke-ecies,
s --- F
/************

-- Hash algorithms declarations

************/

hash-sha256 ALGORITHM ::= {
ID id-sha256 }

hash-sha384 ALGORITHM ::= {
ID id-sha384 }

hash-sha3-256 ALGORITHM ::= {

43

ID id-sha3-256 }

HashFunctions ALGORITHM ::=
{ hash-sha256
| hash-sha384
| hash-sha3-256
s --- }

/************

-- Algorithmldentifiers using the preceding ObjectSets
************/
SignatureAlgorithmldentifier ::= SEQUENCE {
algorithm ALGORITHM.&id({SignatureFunctions}),
parameters ALGORITHM.&Type({SignatureFunctions}{@algorithm}) OPTIONAL }

ContentEncryptionAlgorithmldentifier ::= SEQUENCE {
algorithm ALGORITHM.&id({DataEncryptionFunctions}),
parameters ALGORITHM.&Type({DataEncryptionFunctions}{@algorithm}) OPTIONAL }

HashAlgorithmldentifier ::= SEQUENCE {
algorithm ALGORITHM.&id({HashFunctions}),
parameters ALGORITHM.&Type({HashFunctions}{@algorithm}) OPTIONAL }

KeyEncryptionAlgorithmldentifier ::= SEQUENCE {
algorithm ALGORITHM.&id({KeyEncryptionFunctions}),
parameters ALGORITHM.&Type({KeyEncryptionFunctions}{@algorithm}) OPTIONAL }

/************

-- Attributes
************/
ATTRIBUTE ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Type OPTIONAL
} WITH SYNTAX {
ID &id
[VALUE &Type]

}
attr-messageDigest ATTRIBUTE ::= {
ID id-messageDigest
VALUE OCTET STRING }
attr-contentType ATTRIBUTE ::= {
ID id-contentType
VALUE ContentType }
attr-signingTime ATTRIBUTE ::= {

ID id-signingTime
VALUE Time32 }

SupportedAttributes ATTRIBUTE ::=
{ attr-messageDigest
| attr-contentType
| attr-signingTime

Attribute ::= SEQUENCE {
attrType ATTRIBUTE.&id({SupportedAttributes}),
attrValue ATTRIBUTE.&Type({SupportedAttributes}{@attrType}) OPTIONAL }

/************

-- Data

************/

Data ::= SEQUENCE {
version Version DEFAULT vi,
contentType ContentType,

44

content OCTET STRING OPTIONAL 3}

/************

-- SignedData

************/

SignedData ::= SEQUENCE {
version Version DEFAULT vi1,
hashAlgorithms HashAlgorithmsldentifiers,
signedContentType ContentType,
signedContent OCTET STRING OPTIONAL,
signerinfos Signerinfos }

HashAlgorithmsldentifiers ::= SEQUENCE OF HashAlgorithmldentifier
Signerinfos ::= SEQUENCE OF Signerlinfo
Signerinfo ::= SEQUENCE {

version Version DEFAULT vi1,

signer [0] Signerldentifier DEFAULT self:NULL,

digestAlgorithm [1] HashAlgorithmldentifier DEFAULT { algorithm id-sha256 },
signatureAlgorithm [2] SignatureAlgorithmldentifier DEFAULT { algorithm ecdsa-with-SHA256 3},
signedAttributes SignedAttributes,

certificateChain SEQUENCE OF Certificate OPTIONAL,

signature SignatureValue }

Signerldentifier ::= CHOICE {
self NULL,
certificateDigest CertificateDigest,
certificate Certificate }

CertificateDigest ::= SEQUENCE {
algorithm HashAlgorithmldentifier DEFAULT { algorithm id-sha256 },
digest Hashedld8 }

SignedAttributes ::= SEQUENCE OF Attribute

/************

-- EncryptedData
************/
EncryptedData ::= SEQUENCE {
version Version DEFAULT vi1,
recipients Recipientinfos,
encryptedContentType ContentType,
encryptionAlgorithm ContentEncryptionAlgorithmldentifier,
encryptedContent OCTET STRING OPTIONAL }

Recipientinfos ::= SEQUENCE SIZE (1..MAX) OF Recipientinfo

Recipientinfo ::= SEQUENCE {
recipient Hashedld8,
kexalgid KeyEncryptionAlgorithmldentifier DEFAULT { algorithm id-ecies-103097 },
encryptedKkeyMaterial OCTET STRING }

/************

-- EnrolmentRequest/Response

************/

InnerECRequest ::= SEQUENCE {
requestldentifier OCTET STRING (SI1ZE(16)),
itsld IA5String,
wantedSubjectAttributes SubjectAttributes,
wantedValidityRestrictions ValidityRestrictions OPTIONAL,
responseEncryptionkKey PublicKey }

InnerECResponse ::= SEQUENCE {
requestHash OCTET STRING (SIZE(16)),

45

responseCode EnrolmentResponseCode,
certificate Certificate OPTIONAL,
cAContributionValue INTEGER OPTIONAL }
WITH COMPONENTS { responseCode (ok), certificate PRESENT }
| WITH COMPONENTS { responseCode ALL EXCEPT (ok), certificate ABSENT, cAContributionValue
ABSENT }

)
-- requestHash is a truncated SHA256 of the whole Data structure received
EnrolmentResponseCode ::= ENUMERATED {
ok(0),
cantparse, -- valid for any structure
badcontenttype, -- not encrypted, not signed, not enrolmentrequest
imnottherecipient, -- the "recipients"” doesn"t include me
unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
decryptionfailed, -- works for ECIES-HMAC and AES-CCM
unknownits, -- can"t retrieve the ITS from the itsld
invalidsignature, -- signature verification of the request fails
invalidencryptionkey, -- signature is good, but the responseEncryptionKey is bad
baditsstatus, -- revoked, not yet active
incompleterequest, -- some elements are missing
deniedpermissions, -- requested permissions are not granted
invalidkeys, -- either the verification_key of the encryption_key is bad
deniedrequest, -- any other reason?
-- 3
/************

-- AuthorizationRequest/Response
************/
SharedATRequest ::= SEQUENCE {
requestldentifier OCTET STRING (SI1ZE(16)),
eald Hashedld8,
keyTag OCTET STRING (SIZE(16)),
wantedSubjectAttributes SubjectAttributes,
wantedValidityRestrictions ValidityRestrictions OPTIONAL,
wantedStart Time32,
responseEncryptionkKey PublicKey }

InnerATRequest ::= SEQUENCE {
verificationKey PublicKey,
encryptionKey PublicKey OPTIONAL,
hmacKey OCTET STRING (SI1ZE(32)),
signedByEC SharedATRequest,
detachedEncryptedSignature EncryptedData }

InnerATResponse ::= SEQUENCE {

requestHash OCTET STRING (SIZE(16)),

responseCode AuthorizationResponseCode,

certificate Certificate OPTIONAL,

cAContributionValue INTEGER OPTIONAL }

WITH COMPONENTS { responseCode (ok), certificate PRESENT }

| WITH COMPONENTS { responseCode ALL EXCEPT (ok), certificate ABSENT, cAContributionValue

ABSENT }

)
-- requestHash is a truncated SHA256 of the whole Data structure received
AuthorizationResponseCode ::= ENUMERATED {
ok(0),
-- ITS->AA
its-aa-cantparse, -- valid for any structure
its-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest
its-aa-imnottherecipient, -- the "recipients" of the outermost encrypted data doesn®"t include
me
its-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
its-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM
its-aa-keysdontmatch, -- HMAC keyTag verification fails
its-aa-incompleterequest, -- some elements are missing
its-aa-invalidencryptionkey, -- the responseEncryptionKey is bad

46

its-aa-outofsyncrequest, -- signingTime is outside acceptable limits

its-aa-unknownea, -- the EA identified by eald is unknown to me

its-aa-invalidea, -- the EA certificate is revoked

its-aa-deniedpermissions, -- I, the AA, deny the requested permissions

-—- AA->EA

aa-ea-cantreachea, -- the EA is unreachable (network error?)

-—- EA->AA

ea-aa-cantparse, -- valid for any structure

ea-aa-badcontenttype, -- not encrypted, not signed, not authorizationrequest

ea-aa-imnottherecipient, -- the "recipients" of the outermost encrypted data doesn®"t include
me

ea-aa-unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm

ea-aa-decryptionfailed, -- works for ECIES-HMAC and AES-CCM
-- TODO: continuer

invalidaa, -- the AA certificate presented is invalid/revoked/whatever
invalidaasignature, -- the AA certificate presented can"t validate the request signature
wrongea, -- the encrypted signature doesn"t designate me as the EA
unknownits, -- can"t retrieve the EC/ITS in my DB
invalidsignature, -- signature verification of the request by the EC fails
invalidencryptionkey, -- signature is good, but the key is bad
deniedpermissions, -- permissions not granted
deniedtoomanycerts, -- parallel limit

-~}

/************

-- AuthorizationVal idationRequest/Response

************/

AuthorizationValidationRequest ::= SEQUENCE {
requestldentifier OCTET STRING (SI1ZE(16)),
sharedATRequest SharedATRequest,
detachedEncryptedSignature EncryptedData,
responseEncryptionkKey PublicKey }

AuthorizationValidationResponse ::= SEQUENCE {

requestHash OCTET STRING (SIZE(16)),

responseCode AuthorizationValidationResponseCode,

subjectAssurance SubjectAssurance OPTIONAL,

startDate [0] Time32 OPTIONAL,

endDate [1] Time32 OPTIONAL }

WITH COMPONENTS { responseCode (0ok), subjectAssurance PRESENT }

| WITH COMPONENTS { responseCode ALL EXCEPT (ok), subjectAssurance ABSENT, startDate ABSENT,

endDate ABSENT }

)
-- requestHash is a truncated SHA256 of the whole Data structure received
AuthorizationValidationResponseCode ::= ENUMERATED {
ok(0),
cantparse, -- valid for any structure
badcontenttype, -- not encrypted, not signed, not permissionsverificationrequest
imnottherecipient, -- the "recipients" of the outermost encrypted data doesn"t include me
unknownencryptionalgorithm, -- either kexalg or contentencryptionalgorithm
decryptionfailed, -- works for ECIES-HMAC and AES-CCM
invalidaa, -- the AA certificate presented is invalid/revoked/whatever
invalidaasignature, -- the AA certificate presented can"t validate the request signature
wrongea, -- the encrypted signature doesn"t designate me as the EA
unknownits, -- can"t retrieve the EC/ITS in my DB
invalidsignature, -- signature verification of the request by the EC fails
invalidencryptionkey, -- signature is good, but the responseEncryptionKey is bad
deniedpermissions, -- requested permissions not granted
deniedtoomanycerts, -- parallel limit
deniedrequest, -- any other reason?
-~}

/************

-- Standalone certificate request (similar to PKCS#10)

************/

ITSCertificateRequest ::= SEQUENCE {

a7

itsCertReq ITSCertificateRequestContent,
signatureAlgorithm SignatureAlgorithmldentifier DEFAULT { algorithm ecdsa-with-SHA256 },
signature SignatureValue }

ITSCertificateRequestContent ::= SEQUENCE {
version Version DEFAULT vi1,
subjectName OCTET STRING (SIZE(O..32)),
subjectAttributes SubjectAttributes,
validityRestrictions ValidityRestrictions }

/************

-- CRL

************/

Crl ::= SEQUENCE {
unsignedCrl ToBeSignedCrl,
signatureAlgorithm SignatureAlgorithmldentifier,
signature SignatureValue }

-- signature is applied on unsignedCrl

ToBeSignedCrl ::= SEQUENCE {
version Version,
signer Signerldentifier,
thisUpdate Time32,
nextUpdate Time32,
entries SEQUENCE OF Hashedld8 }

/************

-— TSL

************/

Tsl ::= SEQUENCE {
unsignedTsl ToBeSignedTsl,
signatureAlgorithm SignatureAlgorithmldentifier,
signature SignatureValue }

-- signature is applied on unsignedTsl

ToBeSignedTsl ::= SEQUENCE {
version Version,
signerinfo Signerldentifier,
notBefore Time32,
notAfter Time32,
trustServices SEQUENCE OF TrustService }

TrustService ::= SEQUENCE {
serviceld TRUSTSERVICE.&id ({TrustServiceSet}),
serviceValue TRUSTSERVICE.&Value ({TrustServiceSet}{@serviceld}) }

TrustServiceSet TRUSTSERVICE ::=
{ ts-foreignRoot
ts-renewedRoot

|

| ts-ea

| ts-aa

| ts-distributionCenter

| ts-otherTslPointer

. --- }

TRUSTSERVICE ::= CLASS {

&id ServiceType UNIQUE,
&Value }

WITH SYNTAX {
SYNTAX &Value
ID &id }

ts-foreignRoot TRUSTSERVICE ::= {
SYNTAX Certificate
ID foreignRoot }

ts-renewedRoot TRUSTSERVICE ::= {

48

SYNTAX SEQUENCE {
rootCertificate Certificate,
linkRootCertificate Certificate }
ID renewedRoot }

ts-ea TRUSTSERVICE ::= {
SYNTAX SEQUENCE {
certificate Certificate,
linkedCertificate Certificate OPTIONAL,
accessPoint 1A5String }
ID ea }

ts-aa TRUSTSERVICE ::= {

SYNTAX SEQUENCE {
certificate Certificate,
accessPoint IA5String }

ID aa }

ts-distributionCenter TRUSTSERVICE ::= {
SYNTAX 1A5String
ID distributionCenter }

ts-otherTslPointer TRUSTSERVICE ::= {
SYNTAX 1A5String
ID otherTslPointer }

ServiceType ::= ENUMERATED {
foreignRoot,
renewedRoot,
ea,
aa,
distributionCenter,
otherTslPointer,

-- ¥

END -- of ISEEnrolmentProtocolvl

49

